Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.
Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)—a pathogen-elicited cell death linked to resistance. HR-eliciting Pseudomonas syringae pv. phaseolicola was infiltrated into leaves of tobacco fed with either or . The speed of cell death was faster in -fed compared with -fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in -fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming P. syringae pv. tabaci strain, further suggesting that resistance was compromised with feeding. PR1a is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in -fed compared with fed plants at 24h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in - treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following nutrition, polyamine biosynthesis was predominant, whilst after nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with , which also increases the availability of nutrients to pathogens, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.