Candida spp. can cause mild-to-severe human infections. Certain species have been described as the etiologic agent of human mastitis, inflammation of the breast tissue. Mastitis affects millions of lactating women and can be a source of disease transmission to the infant. In this work, we report the detection of the unusual etiologic agent of human mastitis, Candida guilliermondii, isolated from the milk of a puerperal woman with subacute mastitis in Rio de Janeiro, Brazil. Species identification was performed by MALDI-TOF MS and genetic sequencing. The patient had a full recovery after antifungal therapy.
The current climate change scenario caused by anthropogenic activities has resulted in novel environmental pressures, increasing the occurrence and severity of fungal infections in the marine environment. Research on fungi in several taxonomic groups is widespread although not the case for elasmobranchs (sharks and rays). In this context, the aim of the present study was to screen the oral fungal microbiota present in artisanally captured Rioraja agassizii, a batoid that, although endangered, is highly fished and consumed worldwide. Oropharyngeal samples were obtained by swabbing and the samples were investigated using morphological and phenotypic methods by streaking on Sabouraud Dextrose Agar (SDA) and subculturing onto CHROMagar Candida (BD Difco) and CHROMagar Candida Plus (CHROMagarTM), as well as molecular techniques by amplification of the ITS1-5.8S-ITS2 ribosomal DNA region and a MALDI-TOF MS assessment. The findings indicated the presence of Candida parapsilosis (seven isolates), Candida duobushaemulonii (one isolate) and Rhodotorula mucilaginosa (three isolates), several of these reported for the first time in Rioraja agassizii. In addition, a 100% agreement between the MALDI-TOF results and partial ITS region sequencing was noted, demonstrating that the MALDI-TOF MS is a rapid and effective alternative for yeast identification in Rioraja agassizii isolates and potentially in other elasmobranch species. These findings highlight the need for further research to determine the potential impact on elasmobranch health, ecology, and commercial fisheries. Furthermore, this research is paramount in a One Health framework and may be employed to predict elasmobranch responses to an evolving ocean, keep healthy populations in check, monitor species, and assess the public health consequences of consuming these species.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.