Non-cirrhotic, long-standing portal hypertension of unknown aetiology is being re-evaluated histopathologically and clinically. In this study, we examined 107 livers with this condition (92 wedge biopsy and 15 autopsy specimens) from five institutions in Japan. These cases were histologically categorized into four groups: idiopathic portal hypertension (66 cases), nodular regenerative hyperplasia (14 cases), partial nodular transformation (two cases), and incomplete septal cirrhosis (25 cases). These four groups shared several histological features: dense portal fibrosis with portal venous obliteration and intralobular slender fibrosis. In addition, the histopathological features characteristic of one group were also found to a mild degree in other groups. The histopathological lesions preceding portal venous obliteration remain speculative. However, the portal venous obliteration may be responsible for the occurrence of sustained portal hypertension and several of the pathological changes in these livers. It seems likely that idiopathic portal hypertension, nodular regenerative hyperplasia, partial nodular transformation and incomplete septal cirrhosis comprise a family of non-cirrhotic, long-standing portal hypertension in Japan, and the histological differences between them may reflect chronological progression of a single disease.
The current results indicated that an extrastriatal spreading of microglial activation reflects one of PD pathophysiology occurring at an early stage.
Ceruloplasmin plays an essential role in cellular iron efflux by oxidizing ferrous iron exported from ferroportin. Ferroportin is posttranslationally regulated through internalization triggered by hepcidin binding. Aceruloplasminemia is an autosomal recessive disorder of iron homeostasis resulting from mutations in the ceruloplasmin gene. The present study investigated the biological effects of glycosylphosphatidylinositol (GPI)-linked ceruloplasmin on the hepcidin-mediated internalization of ferroportin. The prevention of hepcidin-mediated ferroportin internalization was observed in the glioma cells lines expressing endogenous ceruloplasmin as well as in the cells transfected with GPI-linked ceruloplasmin under low levels of hepcidin. A decrease in the extracellular ferrous iron by an iron chelator and incubation with purified ceruloplasmin in the culture medium prevented hepcidin-mediated ferroportin internalization, while the reconstitution of apo-ceruloplasmin was not able to prevent ferroportin internalization. The effect of ceruloplasmin on the ferroportin stability was impaired due to three distinct properties of the mutant ceruloplasmin: namely, a decreased ferroxidase activity, the mislocalization in the endoplasmic reticulum, and the failure of copper incorporation into apo-ceruloplasmin. Patients with aceruloplasminemia exhibited low serum hepcidin levels and a decreased ferroportin protein expression in the liver. The in vivo findings supported the notion that under low levels of hepcidin, mutant ceruloplasmin cannot stabilize ferroportin because of a loss-of-function in the ferroxidase activity, which has been reported to play an important role in the stability of ferroportin. The properties of mutant ceruloplasmin regarding the regulation of ferroportin may therefore provide a therapeutic strategy for aceruloplasminemia patients.
ObjectiveIn vivo glycolysis-related glucose metabolism and electron transport chain-related mitochondrial activity may be different regionally in the brains of patients with Alzheimer disease (AD). To test this hypothesis regarding AD pathophysiology, we measured the availability of mitochondrial complex-I (MC-I) with the novel PET probe [18F]2-tert- butyl-4-chloro-5–2H- pyridazin-3-one ([18F]BCPP-EF), which binds to MC-I, and compared [18F]BCPP-EF uptake with 18F-fluorodeoxyglucose ([18F]FDG) uptake in the living AD brain.MethodsFirst, the total distribution volume (VT) of [18F]BCPP-EF from 10 normal controls (NCs) was quantified using arterial blood samples and then tested to observe whether VT could substitute for the standard uptake value relative to the global count (SUVRg). Eighteen NCs and 14 different NCs underwent PET with [18F]BCPP-EF or [18F]FDG, respectively. Second, 32 patients with AD were scanned semiquantitatively with double PET tracers. Interparticipant and intraparticipant comparisons of the levels of MC-I activity ([18F]BCPP-EF) and glucose metabolism ([18F]FDG) were performed.ResultsThe [18F]BCPP-EF VT was positively correlated with the [18F]BCPP-EF SUVRg, indicating that the use of the SUVRg was sufficient for semiquantitative evaluation. The [18F]BCPP-EF SUVRg, but not the [18F]FDG SUVRg, was significantly lower in the parahippocampus in patients with AD, highlighting the prominence of oxidative metabolic failure in the medial temporal cortex. Robust positive correlations between the [18F]BCPP-EF SUVRg and [18F]FDG SUVRg were observed in several brain regions, except the parahippocampus, in early-stage AD.ConclusionsMitochondrial dysfunction in the parahippocampus was shown in early-stage AD. Mitochondria-related energy failure may precede glycolysis-related hypometabolism in regions with pathologically confirmed early neurodegeneration in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.