Because of their distribution and known ability to promote neuronal adhesion, it has been proposed that N-CAM and N-cadherin are involved in the formation of the nervous system. Here, we examine the expression of these molecules during the initiation and cessation of trunk neural crest cell migration during the formation of the peripheral nervous system. Whereas other neural tube cells express N-cadherin, the dorsal neural tube containing neural crest precursors has little or no N-cadherin immunoreactivity. In contrast, N-CAM is expressed in the dorsal neural tube and on early migrating neural crest cells, from which it gradually disappears during migration. Both N-CAM and N-cadherin are absent from neural crest cells at advanced stages of migration. As neural crest cells cease migration and condense to form dorsal root and sympathetic ganglia, N-cadherin but not N-CAM is observed on the forming ganglia, identified by neurofilament expression and the aggregation of HNK-1 reactive cells. The results demonstrate that the absence of N-cadherin correlates with the onset of neural crest migration and its reappearance correlates with cessation of migration and precedes gangliogenesis. 0 1992 Wiley-Liss, Inc.
The Fas antigen is a cell surface protein that can mediate apoptosis in many cell types. Although its physiological function is still unclear, recent evidence indicates that this surface molecule is involved in apoptosis in the immune system and the liver. The epidermis is an organ that undergoes terminal differentiation with the eventual death of keratinocytes, and it has been suggested that this is a specialized form of apoptosis. In the present study, we examined whether or not the Fas antigen is involved in keratinocyte apoptosis. Immunoreactivity for the Fas antigen was found throughout the epidermis in normal human skin sections and cultured normal human keratinocytes, and mRNA for the Fas antigen was found to be constitutively expressed in normal epidermis and cultured normal keratinocytes by RT-PCR analysis. To determine whether the Fas antigen in keratinocytes is functional, we used a cytotoxic monoclonal antibody (mAb) against the Fas antigen to induce apoptosis. This antibody did not induce apoptosis of cultured keratinocytes even though they expressed the Fas antigen. We then tested the ability of several cytokines (TGF beta, TNF alpha and IFN gamma) to induce Fas-mediated keratinocyte apoptosis. Only pretreatment with IFN gamma followed by the addition of the anti-Fas mAb induced apoptosis, as assessed by cell viability, morphological changes and ultrastructural characteristics, suggesting that constitutive expression of the Fas antigen is not sufficient to induce apoptosis in keratinocytes and that keratinocyte apoptosis via the Fas antigen-mediated mechanism may require the activation of keratinocytes by IFN gamma, which is thought to be produced by activated T cells.(ABSTRACT TRUNCATED AT 250 WORDS)
A large-scale conformational change in genomic DNA is an essential feature of gene activation in living cells. Considerable effort has been applied to explain the mechanism in terms of key-lock interaction between sequence-specific regulatory proteins and DNA, in addition to the modification of DNA and histones such as methylation and acetylation. However, it is still unclear whether these mechanisms can explain the ON/OFF switching of a large number of genes that accompanies differentiation, carcinogenesis, etc. In this study, using single-molecule observation of DNA molecules by fluorescence microscopy with the addition of poly-L-lysine with different numbers of monomer units (n = 3, 5, 9, and 92), we found that an ON/OFF discrete transition in the higher-order structure of long duplex DNA is induced by short poly-L-lysine, whereas a continuous gradual change is induced by long poly-L-lysine. On the other hand, polycations with a lower positive charge have less potential to induce DNA compaction. Such a drastic difference in the conformational transition of a giant DNA between short and large oligomers is discussed in relation to the mechanisms of gene regulation in a living cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.