Magnetic structure, tetragonality, and the spin-flip transition for an L1(0)-type MnPt ordered alloy were studied by neutron scattering using a single-crystal specimen. Tetragonality of the lattice showed strong correlation with the spin-flip transition. Although the spin-flip transition looks like a gradual change of the easy axis in the temperature range between 580 and 770 K, two modes of magnon-gap peaks with different energies were observed in this transition temperature range. Thus, the crystal consists of two regions with different anisotropy energies and the volume fractions of these regions with different spin directions change gradually with temperature. The tetragonality and spin-flip transition are discussed using the hard-sphere model for atomic radii of Pt and Mn. The Invar effect of Mn atoms is proposed using high- and low-spin transitions of Mn moments in analogy with the two-γ model of Fe moments in FeNi Invar alloy.
The effect of low mean power laser irradiations with short pulse duration from an Nd:YAG (neodymium-doped yttrium aluminium garnet) laser on a marine biofilm-forming bacterium, Pseudoalteromonas carrageenovora, was investigated in the laboratory. Laser-irradiated bacteria were tested for their ability to attach on nontoxic titanium nitride (TiN) coupons with nonirradiated bacteria as the reference. Two durations of irradiation were tested, 10 and 15 min. Bacterial attachment was monitored after 20 min, 40 min, and 1 h of irradiation. The average laser fluence used for this study was 0.1 J/cm(2). The area of attachment of the irradiated bacteria was significantly less than the reference for both durations of irradiation. The growth of irradiated bacteria showed a longer lag phase than the nonirradiated sample, mainly due to mortality in the former. The bacterial mortality observed was 23.4 +/- 0.71 and 48.6 +/- 6.5% for 10- and 15-min irradiations, respectively. Thus, the results show that low-power pulsed laser irradiations resulted in a significant bacterial mortality and a reduced bacterial attachment on nontoxic hard surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.