A highly integrated phased array transmit/receive architecture is presented. Multilayer microstrip antennas with a scanning potential up to 60° are combined, on a common manifold, with SiGe MMICs including four RF channels each, together with the necessary digital control circuits. Power distribution and combining are realised by the concept of a folded planar reflectarray. This study also includes the necessary solutions for multilayer interconnects and efficient heat removal from the active circuits. To prove the concept, passive arrays with different fixed beam positions have been tested successfully; followed by a first active array demonstrating excellent scanning performance up to 60° both in E‐ and H‐plane.
-This paper presents packaged BiCMOS embedded RF-MEMS switches with integrated inductive loads for frequency tuning at mm-wave frequencies. The developed technique provides easy optimization to maximize the RF performance at the desired frequency without having an effect on the switch mechanics. Insertion loss less than 0.25 dB and isolation better than 20 dB are achieved from 30 to 100 GHz. A glass cap with a silicon frame is used to package the switch. Single-pole-double-throw (SPDT) switches and a 24 -77 GHz reconfigurable LNA is also demonstrated as a first time implementation of single chip BiCMOS reconfigurable circuit at such high frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.