Suppressing reflections from material boundaries has always been an objective, common to many disciplines, where wave phenomena play a role. While impedance difference between materials necessarily leads to a wave reflection, introducing matching elements can almost completely suppress this phenomenon. However, many impedance matching approaches are based on resonant conditions, which come at a price of narrow bandwidth operation. Although various impedance matching architectures have been developed in the past, many of them fail to produce a broadband and flat (ripple-free) transmission, particularly in the presence of strong chromatic dispersion. Here we propose and demonstrate an approach for designing an optimal matching stack capable of providing a flat broadband transmission even in the presence of significant group velocity dispersion. As an experimental example for the method verification, we used a strong modal dispersion in a rectangular waveguide, operating close to a mode cut-off. The waveguide core consists of alternating polymer sections with a variable filling factor, realized using additive manufacturing. As a result, a broadband matching in the range of 7-8GHz was demonstrated and proved to significantly outperform the standard binomial transformer solution. The proposed method can find use across different disciplines, including optics, acoustics and wireless communications, where undesired reflections can significantly degrade system’s performances.
Additive manufacturing of complex volumetric structures opened new frontiers in many technological fields, turning previously inconceivable designs into a practical reality. Electromagnetic components, including antenna and waveguiding elements, can benefit from exploring the third dimension. While fused deposition modeling (FDM) polymer printers become widely accessible, they manufacture structures with moderately low electromagnetic permittivities, compared to metals. However, metal 3D printers, being capable of producing complex volumetric constructions, remain extremely expensive and hard to maintain apparatus, suitable for high-end market applications. Here we develop a new metal printing technique, based on a low-cost and simple FDM device and subsequent electrochemical deposition. For testing the new method, we fabricated several antenna devices and compared their performances to standard printed FeCl3 etched board-based counterparts, demonstrating clear advantages of the new technique. Our new metal printing can be applied to manufacture electromagnetic devices as well as metallic structures for other applications.
Parametric retrieval of electromagnetic properties is important for both new materials characterization and an accurate design of devices. While quite a few techniques have been developed over the years, precise mapping of high-permittivity samples remain challenging. Here we advance a so-called micro-strip technique, where transmission coefficients of a waveguide system with an analyte on top are used to extract electromagnetic parameters of the later. Our cross-like strip line configuration has a split ring resonator on one edge and an open circuit termination on another. This design allows performing a simultaneous test of cylindrical and rectangular samples. Our new post-processing scheme was tested on a water-filled container and showed 96.3% accuracy, assessed by comparing our results with tabulated data.
Hyperbolic metamaterials were initially proposed in optics to boost radiation efficiencies of quantum emitters. Adopting this concept for antenna design allows approaching long-standing contests in radio physics. For example, broadband impedance matching, accompanied with moderately high antenna gain, is among the existent challenges. Here we propose employing hyperbolic metamaterials for a broadband impedance matching, while a structured layer on top of a metamaterials slab ensures an efficient and directive energy outcoupling to a free space. In particular, a subwavelength loop antenna, placed underneath the matching layer, efficiently excites bulk metamaterial modes, which have well-resolved spatial–temporal separation owing to the hypebolicity of effective permeability tensor. Interplaying chromatic and modal dispersions enable to map different frequencies into non overlapping spatial locations within a compact subwavelength hyperbolic slab. The outcoupling of energy to the free space is obtained by patterning the slab with additional resonant elements, e.g. high index dielectric spheres. As the result, two-order of magnitude improvement in linear gain of the device is predicted. The proposed new architecture can find a use in applications, where multiband or broadband compact devices are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.