The Sac (saccharin preference) locus affecting mouse behavioral and neural responsiveness to sweeteners has been mapped to distal Chr 4. A putative sweet taste receptor, T1R1, has been recently cloned, and the gene encoding it, Gpr70, has also been mapped to mouse distal Chr 4. To assess Gpr70 as a candidate gene for Sac, we compared the Gpr70 sequences of C57BL/6ByJ and 129P3/J mouse strains with different alleles of Sac. Using Gpr70 sequence variation between the C57BL/6ByJ and 129P3/J strains, we conducted a high-resolution analysis of the chromosomal localization of the Gpr70 and Sac loci in the F 2 hybrids and 129.B6-Sac partially congenic mice originating from these two strains. The Gpr70 gene maps proximal to Sac, which demonstrates that they are different loci.
The tasting of bitter compounds may have evolved as a protective mechanism against ingestion of potentially harmful substances. We have identified second messengers involved in bitter taste and show here for the first time that they are rapid and transient. Using a quench-flow system, we have studied bitter taste signal transduction in a pair of mouse strains that differ in their ability to taste the bitter stimulus sucrose octaacetate (SOA); however, both strains taste the bitter agent denatonium. In both strains of mice, denatonium (10 mM) induced a transient and rapid increase in levels of the second messenger inositol 1,4,5-trisphosphate (IP3) with a maximal production near 75-100 ms after stimulation. In contrast, SOA (100 microM) brought about a similar increase in IP3 only in SOA-taster mice. The response to SOA was potentiated in the presence of GTP (1 microM). The GTP-enhanced SOA-response supports a G protein-mediated response for this bitter compound. The rapid kinetics, transient nature, and specificity of the bitter taste stimulus-induced IP3 formation are consistent with the role of IP3 as a second messenger in the chemoelectrical transduction of bitter taste.
BackgroundThe perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli.Methods and FindingsLingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1β, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-β2, the δ-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as β-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1β, PKD2L1, phospholipase C-β2, and δ-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells.ConclusionsThese data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals (“natural knockouts”) suggests a cell lineage for sour that is independent of the other taste modalities.
Inositol 1,4,5-trisphosphate (InsP3), a product of G-protein-mediated receptor activation of phosphoinositide turnover, plays the role of a second messenger when olfactory neurons are stimulated with certain olfactory stimuli. In this paper we examine the specific binding of [3H]InsP3 to isolated olfactory cilia, microsomes and brain membranes from the channel catfish (Ictalurus punctatus) and, by photoaffinity labelling with an InsP3 analogue (125I-labelled 1-[3-(4-azidosalicyloxy)-aminopropyl]inositol 1,4,5-trisphosphate (125I-ASA-InsP3)], we tentatively identify the major InsP3-binding protein in catfish olfactory cilia. InsP3 binding to ciliary membranes is specific and saturable, with a Kd of 1.10 +/- 0.31 microM and a maximum number of binding sites (Bmax) of 17.6 +/- 5.8 pmol/mg. The rank order for potency of inhibition of [3H]InsP3 binding is Ins(1,4)P2 less than Ins(1,3,4)P3 less than Ins(1,3,4,5)P4 = Ins(1,4,5)P3 less than Ins(2,4,5)P3. Exposure of cilia membranes to u.v. light in the presence of 125I-ASA-InsP3 results in the labelling of a protein with apparent Mr 107,000. Labelling is specifically prevented by Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(1,3,4,5)P4, but not by Ins(1,4)P2 or Ins(1,3,4)P3. Both specific [3H]InsP3 binding and photoaffinity labelling of the Mr-107,000 protein were displaced by heparin. The Kd and the inhibition of [3H]InsP3 binding and of photoaffinity labelling by inositol phosphates and heparin are consistent with the ability of micromolar concentrations of Ins(1,4,5)P3 [but not Ins(1,3,4)P3] to activate the InsP3-gated currents in patch-clamp experiments with olfactory neurons. These results suggest that InsP3 binding to a Mr-107,000 cilia membrane protein may represent binding to the olfactory InsP3-gated cation channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.