During 2008-2009, fifteen field infectious bronchitis viruses (IBVs) were isolated from commercial chicken farms in Thailand. After sequencing of the complete S1 gene, phylogenetic analysis was performed and this found that the Thai IBV isolates were divided into three distinct groups, unique to Thailand (group I), QX-like IBV (group II), and Massachusetts type (group III). This finding indicated that the recent Thai IBVs evolved separately and that at least three groups of viruses are circulating in Thailand. The recombination analysis of the S1 gene demonstrated that the 5'-terminus of the group I was similar to isolate THA001 which was unique to Thailand, isolated in 1998 whereas the 3'-terminus was similar to the group II. Moreover, the analysis of the S1 gene of the group II showed that the 5'-terminus was similar to QXIBV, isolated in China whereas the remaining region at the 3'-terminus was similar to the Chinese strain JX/99/01. The results indicated that the recombination events occurred in the S1 gene between the field strains. Based on these facts, the field IBV in Thailand has undergone genetic recombination.
Thirteen field isolates of infectious bronchitis virus (IBV) were isolated from broiler flocks in Thailand between January and June 2008. The 878-bp of the S1 gene covering a hypervariable region was amplified and sequenced. Phylogenetic analysis based on that region revealed that these viruses were separated into two groups (I and II). IBV isolates in group I were not related to other IBV strains published in the GenBank database. Group 1 nucleotide sequence identities were less than 85% and amino acid sequence identities less than 84% in common with IBVs published in the GenBank database. This group likely represents the strains indigenous to Thailand. The isolates in group II showed a close relationship with Chinese IBVs. They had nucleotide sequence identities of 97-98% and amino acid sequence identities 96-98% in common with Chinese IBVs (strain A2, SH and QXIBV). This finding indicated that the recent Thai IBVs evolved separately and at least two groups of viruses are circulating in Thailand.
Infectious bronchitis (IB) causes severe economic losses to the poultry industry worldwide owing to frequent emergence of novel infectious bronchitis virus (IBV) variants, which potentially affect the effectiveness of the currently used IBV vaccine. Therefore, continuous monitoring of IBV genotypes and lineages recently circulating in chickens worldwide is essential. In this study, we characterized the complete S1 gene from 120 IBVs circulating in chickens in Thailand from 2014 to 2016. Phylogenetic analysis of the complete S1 gene of 120 Thai IBVs revealed that the 2014-2016 Thai IBVs were divided into 3 lineages (GI-1, GI-13, and GI-19) and a novel IBV variant. Our results also showed that GI-19 lineage has become the predominant lineage of IBV circulating in chicken flocks in Thailand from 2014 to 2016. It is interesting to note that a novel IBV variant, which was genetically different from the established IBV lineages, was identified in this study. The recombination analysis demonstrated that this novel IBV variant was a recombinant virus, which was originated from the GI-19 and GI-13 lineage viruses. In conclusion, our data demonstrate the circulation of different lineages of IBV and the presence of a novel recombinant IBV variant in chicken flocks in Thailand. This study highlights the high genetic diversity and continued evolution of IBVs in chickens in Thailand, and the importance of continued IBV surveillance for effective control and prevention of IB.
Aim: The aim of this study was to characterize Leucocytozoon caulleryi from backyard chickens in Khon Kaen Province, Thailand. Materials and Methods: Tissue samples were collected from backyard chickens suspected to have leucocytozoonosis and subjected to histopathology examination. The BLAST Tool at NCBI GenBank (Basic Local Alignment Research Tools) (http://www.ncbi.nlm.nih.gov/BLAST) was used to identify the nucleotide sequence of the partial cytochrome c oxidase subunit I (cox I) gene. A Phylogenetic tree for analysis of L. caulleryi was constructed by using MEGA 7.0 software (https:// www.megasoftware.net/). Results: The necropsy results revealed the subcutaneous hemorrhages of pectoral muscles, multifocal hemorrhages of the thymus and pectoral muscles, hemorrhage of the proventriculus and peritoneal cavity, and megaloschizonts of the pancreas and intestine, including subcapsular hemorrhages of the liver. Microscopic examination revealed numerous megaloschizonts of Leucocytozoon spp. in the pectoral muscles, intestine, pancreas, and thymus. Molecular analysis of the partial cox I gene showed that the causal agent was closely related to L. caulleryi reported in Japan. Conclusion: From these results, L. caulleryi was determined to be the causal agent of leucocytozoonosis and was closely associated with L. caulleryi reported in Japan.
Avian malaria is one of the most important general blood parasites of poultry in Southeast Asia. Plasmodium (P.) juxtanucleare causes avian malaria in wild and domestic fowl. This study aimed to identify and characterize the Plasmodium species infecting in Thai native fowl. Blood samples were collected for microscopic examination, followed by detection of the Plasmodium cox I gene by using PCR. Five of the 10 sampled fowl had the desired 588 base pair amplicons. Sequence analysis of the five amplicons indicated that the nucleotide and amino acid sequences were homologous to each other and were closely related (100% identity) to a P. juxtanucleare strain isolated in Japan (AB250415). Furthermore, the phylogenetic tree of the cox I gene showed that the P. juxtanucleare in this study were grouped together and clustered with the Japan strain. The presence of P. juxtanucleare described in this study is the first report of P. juxtanucleare in the Thai native fowl of Thailand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.