From the liquid state to room temperature, two successive solid-state phase transitions occur in pure zirconia. It is well-known that the last one (tetragonal to monoclinic) is martensitic and induces large volume variations and shear strains. Elastic and inelastic behaviors of zirconia-based materials are strongly influenced by this transition and the associated strain fields that it induces. Knowledge of strain and stress at the crystal scale is thus a crucial point. Using fully dense pure zirconia polycrystals obtained by a fuse casting process, we have determined at a sub-micrometric scale, by X-ray Laue microdiffraction, the strains map at room temperature in as-cast specimens and after a post elaboration high temperature thermal treatment. We observed that the fluctuation of deviatoric elastic strain is huge, the standard deviation of normal component being in the range of 1-2%. The heat treatment tends to even further increase this range of fluctuation, despite the development of a multiscale crack network formed during the cooling. Correspondingly, the associated stress level is also huge. It lies in the 5 GPa range with stress gradient amounting 1 GPa μm − 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.