Injury, inflammation, and nerve damage initiate a wide variety of cellular and molecular processes that culminate in hyperexcitation of sensory nerves, which underlies chronic inflammatory and neuropathic pain. Using behavioral readouts of pain hypersensitivity induced by angiotensin II (Ang II) injection into mouse hindpaws, our study shows that activation of the type 2 Ang II receptor (AT2R) and the cell-damage-sensing ion channel TRPA1 are required for peripheral mechanical pain sensitization induced by Ang II in male and female mice. However, we show that AT2R is not expressed in mouse and human dorsal root ganglia (DRG) sensory neurons. Instead, expression/activation of AT2R on peripheral/skin macrophages (MΦs) constitutes a critical trigger of mouse and human DRG sensory neuron excitation. Ang II-induced peripheral mechanical pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs. Furthermore, AT2R activation in MΦs triggers production of reactive oxygen/nitrogen species, which -activate TRPA1 on mouse and human DRG sensory neurons via cysteine modification of the channel. Our study thus identifies a translatable immune cell-to-sensory neuron signaling crosstalk underlying peripheral nociceptor sensitization. This form of cell-to-cell signaling represents a critical peripheral mechanism for chronic pain and thus identifies multiple druggable analgesic targets. Pain is a widespread health problem that is undermanaged by currently available analgesics. Findings from a recent clinical trial on a type II angiotensin II receptor (AT2R) antagonist showed effective analgesia for neuropathic pain. AT2R antagonists have been shown to reduce neuropathy-, inflammation- and bone cancer-associated pain in rodents. We report that activation of AT2R in macrophages (MΦs) that infiltrate the site of injury, but not in sensory neurons, triggers an intercellular redox communication with sensory neurons via activation of the cell damage/pain-sensing ion channel TRPA1. This MΦ-to-sensory neuron crosstalk results in peripheral pain sensitization. Our findings provide an evidence-based mechanism underlying the analgesic action of AT2R antagonists, which could accelerate the development of efficacious non-opioid analgesic drugs for multiple pain conditions.
SUMMARY Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation, nociceptor sensitization by inflammatory mediators, and pain and itch behaviors. These experiments provide a rationale for the therapeutic use of peripherally restricted KOR agonists.
Primary cultures of rodent sensory neurons are widely used to investigate the cellular and molecular mechanisms involved in pain, itch, nerve injury, and regeneration. However, translation of these preclinical findings may be greatly improved by direct validation in human tissues. We have developed an approach to extract and culture human sensory neurons in collaboration with a local organ procurement organization. Here we describe the surgical procedure for extraction of human dorsal root ganglia (hDRG) and the necessary modifications to existing culture techniques to prepare viable adult human sensory neurons for functional studies. Dissociated sensory neurons can be maintained in culture for >10 days, and are amenable to electrophysiological recording, calcium imaging, and viral gene transfer. The entire process of extraction and culturing can be completed in less than 7 hours, and can be performed by trained graduate students. This approach can be applied at any institution with access to organ donors consenting to tissue donation for research and provides an invaluable resource for improving translational research.
It has been suggested that the lack of rodent behavioral assays that represent the complexities of human pain contributes to the poor translational record of basic pain research findings. Clinically, chronic pain interferes with patient mobility and physical/social activities, and increases anxiety symptoms, in turn negatively impacting quality of life. To determine whether these behaviors are similarly influenced by putative pain manipulations in rodents, we systematically evaluated wheel running, locomotion, gait, social interaction, and anxiety-like behavior in models of inflammation and nerve injury in adult C57BL6/J male mice. We demonstrate that inflammation and nerve injury differentially affect voluntary behaviors while mice are hypersensitive to mechanical stimuli. Bilateral Complete Freund’s Adjuvant (CFA)-induced inflammation transiently suppressed wheel running and locomotion and also induced gait deficits. In contrast, spared nerve injury (SNI) altered gait and impaired gross motor coordination. SNI-induced gait changes were not reversed by the analgesic PD123319, an angiotensin II type 2 receptor antagonist, and are therefore likely to be motor-related rather than pain-related. Neither CFA nor SNI significantly altered social interaction or elicited general anxiety-like behavior. Our findings suggest that in contrast to humans, mobility and physical/social activities are minimally altered, if at all, in mice following inflammation or nerve injury.
Both clinical and animal studies suggest that exercise may be an effective way to manage inflammatory and neuropathic pain conditions. However, existing animal studies commonly use forced exercise paradigms that incorporate varying degrees of stress, which itself can elicit analgesia, and thus may complicate the interpretation of the effects of exercise on pain. We investigated the analgesic potential of voluntary wheel running in the formalin model of acute inflammatory pain and the spared nerve injury model of neuropathic pain in mice. In uninjured, adult C57BL/6J mice, 1 to 4 weeks of exercise training did not alter nociceptive thresholds, lumbar dorsal root ganglia neuronal excitability, or hindpaw intraepidermal innervation. Further, exercise training failed to attenuate formalin-induced spontaneous pain. Lastly, 2 weeks of exercise training was ineffective in reversing spared nerve injury-induced mechanical hypersensitivity or in improving muscle wasting or hindpaw denervation. These findings indicate that in contrast to rodent forced exercise paradigms, short durations of voluntary wheel running do not improve pain-like symptoms in mouse models of acute inflammation and peripheral nerve injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.