We propose a Deep Convolutional Neural Network (CNN) architecture for computing a Compensatory Reserve Metric (CRM) for trauma victims suffering from hypovolemia (decreased circulating blood volume). The CRM is a single health indicator value that ranges from 100% for healthy individuals, down to 0% at hemodynamic decompensationwhen the body can no longer compensate for blood loss. The CNN is trained on 20 second blood pressure waveform segments obtained from a finger-cuff monitor of 194 subjects. The model accurately predicts CRM when tested on data from 22 additional human subjects obtained from Lower Body Negative Pressure (LBNP) emulation of hemorrhage, attaining a mean squared error (MSE) of 0.0238 over the full range of values, including those from subjects with both low and high tolerance to central hypovolemia.
BACKGROUND: Circulating blood volume (BV) and maximal oxygen uptake (Vo2max) are physiological characteristics important for optimal human performance in aerospace and military operational environments. We tested the hypothesis that BV and Vo2max are lower in older people independent of sex.METHODS: To accomplish this, a “data mining” effort of an historic database generated from NASA and U.S. Air Force experiments was conducted. BV, red cell volume, plasma volume, hematocrit, and Vo2max were measured in 84 healthy individuals (24 women, 60 men) across an age range of 23 to 65 yr to assess the interrelationship between sex, age, BV, and Vo2max. Subjects were classified in age groups by < 40 yr and ≥ 40 yr; these groups identified women as pre- vs. postmenopausal.RESULTS: Consistent with our hypothesis, comparisons revealed that men had higher BV, red cell volume, hematocrit, and Vo2max than women when standardized for body mass. Against expectations, BV was not different in older compared with younger men and women. Vo2max was not different in older compared with younger women, while Vo2max was lower in older men.CONCLUSION: We conclude that physiological mechanisms other than BV associated with aging appear to be responsible for a decline in Vo2max of our older men. Furthermore, factors other than menopause may also influence the control of BV in the women. Our results provide evidence that aging may not compromise men or women in scenarios where BV can affect performance in aerospace and military environments.Koons NJ, Suresh MR, Schlotman TE, Convertino VA. Interrelationship between sex, age, blood volume, and Vo2max. Aerosp Med Hum Perform. 2019; 90(4):362–368.
Women generally display lower tolerance to acute central hypovolemia than men. The measurement of compensatory reserve (CRM) is a novel metric that provides information about the sum total of all mechanisms that together work to compensate for the relative blood volume deficit. Hemodynamic decompensation occurs with depletion of the CRM (i.e., 0% CRM). In the present study, we hypothesized that the lower tolerance to progressive central hypovolemia reported in women can be explained by a faster reduction rate in CRM compared with men rather than sex differences in absolute integrated compensatory responses. Continuous, noninvasive measures of CRM were collected from 208 healthy volunteers (107 men and 85 women) who underwent progressive stepwise central hypovolemia induced by lower body negative pressure to the point of presyncope. Comparisons revealed shorter ( P < 0.01) times in female participants compared with male participants to reach 30% and 0% CRM. Similarly, the lower body negative pressure level, represented by the cumulative stress index, was less at 30% and 0% CRM in women compared with men ( P < 0.01). Changes in hemodynamic responses and frequency-domain data (oscillations in cerebral blood flow velocity and mean arterial blood pressure) were similar between men and women at 0% CRM ( P > 0.05). We conclude that compensatory responses to central hypovolemia in women were similar to men but were depleted at a faster rate compared with men. The earlier depletion of the compensatory reserve in women appears to be influenced by failure to maintain adequate cerebral oxygen delivery. NEW & NOTEWORTHY We compared hemodynamic and metabolic responses in men and women to experimentally controlled reductions in central blood volume at physiologically equivalent levels of compensatory reserve. We corroborated previous findings that females have lower tolerance to central hypovolemia than males but demonstrated for the first time that compensatory responses are similar. Our findings suggest lower tolerance to central hypovolemia in women results from reaching critical cerebral delivery of oxygen faster than men.
The concept of prolonged field care (PFC), or medical care applied beyond doctrinal planning timelines, is the top priority capability gap across the US Army. PFC is the idea that combat medics must be prepared to provide medical care to serious casualties in the field without the support of robust medical infrastructure or resources in the event of delayed medical evacuation. With limited resources, significant distances to travel before definitive care, and an inability to evacuate in a timely fashion, medical care during exploration spaceflight constitutes the ultimate example PFC. One of the main capability gaps for PFC in both military and spaceflight settings is the need for technologies for individualized monitoring of a patient’s physiological status. A monitoring capability known as the compensatory reserve measurement (CRM) meets such a requirement. CRM is a small, portable, wearable technology that uses a machine learning and feature extraction-based algorithm to assess real-time changes in hundreds of specific features of arterial waveforms. Future development and advancement of CRM still faces engineering challenges to develop ruggedized wearable sensors that can measure waveforms for determining CRM from multiple sites on the body and account for less than optimal conditions (sweat, water, dirt, blood, movement, etc.). We show here the utility of a military wearable technology, CRM, which can be translated to space exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.