We propose a Deep Convolutional Neural Network (CNN) architecture for computing a Compensatory Reserve Metric (CRM) for trauma victims suffering from hypovolemia (decreased circulating blood volume). The CRM is a single health indicator value that ranges from 100% for healthy individuals, down to 0% at hemodynamic decompensationwhen the body can no longer compensate for blood loss. The CNN is trained on 20 second blood pressure waveform segments obtained from a finger-cuff monitor of 194 subjects. The model accurately predicts CRM when tested on data from 22 additional human subjects obtained from Lower Body Negative Pressure (LBNP) emulation of hemorrhage, attaining a mean squared error (MSE) of 0.0238 over the full range of values, including those from subjects with both low and high tolerance to central hypovolemia.
The application of artificial intelligence (AI) has provided new capabilities to develop advanced medical monitoring sensors for detection of clinical conditions of low circulating blood volume such as hemorrhage. The purpose of this study was to compare for the first time the discriminative ability of two machine learning (ML) algorithms based on real-time feature analysis of arterial waveforms obtained from a non-invasive continuous blood pressure system (Finometer®) signal to predict the onset of decompensated shock: the compensatory reserve index (CRI) and the compensatory reserve metric (CRM). One hundred ninety-one healthy volunteers underwent progressive simulated hemorrhage using lower body negative pressure (LBNP). The least squares means and standard deviations for each measure were assessed by LBNP level and stratified by tolerance status (high vs. low tolerance to central hypovolemia). Generalized Linear Mixed Models were used to perform repeated measures logistic regression analysis by regressing the onset of decompensated shock on CRI and CRM. Sensitivity and specificity were assessed by calculation of receiver-operating characteristic (ROC) area under the curve (AUC) for CRI and CRM. Values for CRI and CRM were not distinguishable across levels of LBNP independent of LBNP tolerance classification, with CRM ROC AUC (0.9268) being statistically similar (p = 0.134) to CRI ROC AUC (0.9164). Both CRI and CRM ML algorithms displayed discriminative ability to predict decompensated shock to include individual subjects with varying levels of tolerance to central hypovolemia. Arterial waveform feature analysis provides a highly sensitive and specific monitoring approach for the detection of ongoing hemorrhage, particularly for those patients at greatest risk for early onset of decompensated shock and requirement for implementation of life-saving interventions.
Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4 cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4 cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.