Cells assemble mitotic spindles during each round of division to insure accurate segregation of their duplicated genome. In animal cells, stereotypical spindles have two poles, each containing one centrosome, from which microtubules are nucleated. In contrast, many cancer cells often contain more than two centrosomes and form transient multipolar spindle structures with more than two poles. In order to divide and produce viable progeny, the multipolar spindle intermediate must be reshaped into a pseudo-bipolar structure via a process called centrosomal clustering. Pseudo-bipolar spindles appear to function normally during mitosis, but they occasionally give rise to aneuploid and transformed daughter cells. Agents that inhibit centrosomal clustering might therefore work as a potential cancer therapy, specifically targeting mitosis in supernumerary centrosome-containing cells.
During interphase of the eukaryotic cell cycle, the microtubule (MT) cytoskeleton serves as both a supportive scaffold for organelles and an arborized system of tracks for intracellular transport. At the onset of mitosis, the position of the astral MT network, specifically its center, determines the eventual location of the spindle apparatus and ultimately the cytokinetic furrow. Positioning of the MT aster often results in its movement to the center of a cell, even in large blastomeres hundreds of microns in diameter. This translocation requires positioning forces, yet how these forces are generated and then integrated within cells of varied sizes and geometries remains an open question. Here we describe a method that combines microfluidics, hydrogels, and Xenopus laevis egg extract to investigate the mechanics of aster movement and centration. We determined that asters were able to find the center of artificial channels and annular cylinders, even when cytoplasmic dynein-dependent pulling mechanisms were inhibited. Characterization of aster movement away from V-shaped hydrogel barriers provided additional evidence for a MT-based pushing mechanism. Importantly, the distance over which this mechanism seemed to operate was longer than that predicted by radial aster growth models, agreeing with recent models of a more complex MT network architecture within the aster. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]
The ability to visualize cytoskeletal proteins and their dynamics in living cells has been critically important in advancing our understanding of numerous cellular processes, including actin- and microtubule-dependent phenomena such as cell motility, cell division, and mitosis. Here we describe a novel set of fluorescent protein fusions designed specifically to visualize microtubules in living systems using fluorescence microscopy. Each fusion contains a fluorescent protein module linked in frame to a modified phospho-deficient version of the microtubule-binding domain of Tau (mTMBD). We found that expressed and purified constructs containing a single mTMBD decorated Xenopus egg extract spindles more homogenously than similar constructs containing the microtubule-binding domain of Ensconsin, suggesting that the binding affinity of mTMBD is minimally affected by localized signaling gradients generated during mitosis. Furthermore, microtubule dynamics were not grossly perturbed by the presence of Tau-based fluorescent protein fusions. Interestingly, the addition of a second mTMBD to the opposite terminus of our construct caused dramatic changes to the spatial localization of probes within spindles. These results support the use of Tau-based fluorescent protein fusions as minimally perturbing tools to accurately visualize microtubules in living systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.