BackgroundBloodstream infections due to bacterial pathogens are a major cause of morbidity and mortality in Bangladesh and other developing countries. In these countries, most patients are treated empirically based on their clinical symptoms. Therefore, up to date etiological data for major pathogens causing bloodstream infections may play a positive role in better healthcare management. The aim of this study was to identify the bacterial pathogens causing major bloodstream infections in Dhaka, Bangladesh and determine their antibiotic susceptibility pattern.MethodsFrom January 2005 to December 2014, a total of 103,679 single bottle blood samples were collected from both hospitalized and domiciliary patients attending Dhaka hospital, icddrb, Bangladesh All the blood samples were processed for culture using a BACT/Alert blood culture machine. Further identification of bacterial pathogens and their antimicrobial susceptibility test were performed using standard microbiological procedures.ResultsOverall, 13.6% of the cultured blood samples were positive and Gram-negative (72.1%) bacteria were predominant throughout the study period. Salmonella Typhi was the most frequently isolated organism (36.9% of samples) in this study and a high percentage of those strains were multidrug-resistant (MDR). However, a decreasing trend in the S. Typhi isolation rate was observed and, noticeably, the percentage of MDR S. Typhi isolated declined sharply over the study period. An overall increase in the presence of Gram-positive bacteria was observed, but most significantly we observed the percentage of MDR Gram-positive bacteria to double over the study period. Overall, Gram positive bacteria were more resistant to most of the commonly used antibiotics than Gram-negative bacteria, but the MDR level was high in both groups.ConclusionsThis study identified the major bacterial pathogens involved with BSI in Dhaka, Bangladesh and also revealed their antibiotic susceptibility patterns. We expect our findings to help healthcare professionals to make informed decisions and provide better care for their patients. Also, we hope this study will assist researchers and policy makers to prioritize their research options to face the future challenges of infectious diseases.Electronic supplementary materialThe online version of this article (doi:10.1186/s13756-016-0162-z) contains supplementary material, which is available to authorized users.
During interphase of the eukaryotic cell cycle, the microtubule (MT) cytoskeleton serves as both a supportive scaffold for organelles and an arborized system of tracks for intracellular transport. At the onset of mitosis, the position of the astral MT network, specifically its center, determines the eventual location of the spindle apparatus and ultimately the cytokinetic furrow. Positioning of the MT aster often results in its movement to the center of a cell, even in large blastomeres hundreds of microns in diameter. This translocation requires positioning forces, yet how these forces are generated and then integrated within cells of varied sizes and geometries remains an open question. Here we describe a method that combines microfluidics, hydrogels, and Xenopus laevis egg extract to investigate the mechanics of aster movement and centration. We determined that asters were able to find the center of artificial channels and annular cylinders, even when cytoplasmic dynein-dependent pulling mechanisms were inhibited. Characterization of aster movement away from V-shaped hydrogel barriers provided additional evidence for a MT-based pushing mechanism. Importantly, the distance over which this mechanism seemed to operate was longer than that predicted by radial aster growth models, agreeing with recent models of a more complex MT network architecture within the aster. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]
It is well established that changes in the underlying architecture of the cell's microtubule network can affect organelle organization within the cytoplasm, but it remains unclear whether the spatial arrangement of organelles reciprocally influences the microtubule network. Here we use a combination of cell-free extracts and hydrogel microenclosures to characterize the relationship between membranes and microtubules during microtubule aster centration. We found that initially disperse ER membranes are collected by the aster and compacted near its nucleating center, all while the whole ensemble moves toward the geometric center of its confining enclosure. Once there, aster microtubules adopt a bullseye pattern with a high density annular ring of microtubules surrounding the compacted membrane core of lower microtubule density. Formation of this pattern was inhibited when dynein-dependent transport was perturbed or when membranes were depleted from the extracts. Asters in membrane-depleted extracts were able to move away from the most proximal wall but failed to center in cylindrical enclosures with diameters greater than or equal to 150 µm. Taken as whole, our data suggest that the dynein-dependent transport of membranes buttresses microtubules near the aster center and that this plays an important role in modulating aster architecture and position. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]
Bacteria isolated from tannery wastes were evaluated for their resistance towards chromium (Cr) as well as antibiotics. Out of the twelve isolates, three bacterial strains showed Cr resistance even at 10 mg/ml concentration and were cocci in shape. Antibiogram suggested that these Cr-resistant bacteria were also resistant to multiple antibiotics. This study suggested that exposure to Cr in the environment can also lead to the development of antibiotic resistant microorganisms. Future research will disclose the mechanism underlying the existence of such dual resistance and also its impact on public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.