Pinus eldarica (Pinaceae), an evergreen plant, is distributed across the warm and dry climates of western Asia, including Asia Minor, the Middle East, and land surrounding the Caspian Sea. Essential oils (EOs) from different aerial parts of this tree have been used in traditional medicine. We aimed to investigate the chemical profile and antimicrobial activity of the EO from P. eldarica grown in northwestern Iran. EO from the needles, bark, and pollen were extracted with boiling water using a Clevenger apparatus at yield of 0.7–1.2 cm3/100 g of dry plant material. The main chemical components of the EO from the needles were D-germacrene (18.17%), caryophyllene (15.42%), γ-terpinene (12.96%), and β-pinene (10.62%); those from the bark were limonene (16.99%), caryophyllene oxide (13.22%), and drimenol (13.2%); and those from the pollen were α-pinene (25.64%) and limonene (19.94%). In total, 83 constituents were characterized in the EOs, using gas chromatography mass spectrometry analysis; mainly, sesquiterpene hydrocarbons in needle EO and monoterpene hydrocarbons in pollen and bark EOs. β-Pinene, β-myrcene, limonene, and caryophyllene were identified in the EOs from all three plant parts. The antibacterial and antifungal properties of the EOs were examined: pollen EO exhibited antibacterial activity against Escherichia coli; bark EO inhibited the growth of Candida albicans and Staphylococcus aureus; and the needle EO inhibited the growth of S. aureus. Thus, the EOs from aerial parts of P. eldarica can benefit the EO industry and antibiotic development.
Effects of vitamin E and selenium supplementation on aldehyde oxidase (AO) and xanthine oxidase (XO) activities and antioxidant status in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats were examined. AO and XO activities increased significantly after induction of diabetes in rats. Following oral vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) intake once a day for 4 weeks, XO activity decreased significantly. AO activity decreased significantly in liver, but remained unchanged in kidney and heart of vitamin E- and selenium-treated rats compared to the diabetic rats. Total antioxidants status, paraoxonase-1 (PON1) and erythrocyte superoxide dismutase activities significantly decreased in the diabetic rats compared to the controls, while a higher fasting plasma glucose level was observed in the diabetic animals. The glutathione peroxidase activity remained statistically unchanged. Malondialdehyde and oxidized low-density lipoprotein levels were higher in the diabetic animals; however, these values were significantly reduced following vitamin E and selenium supplementation. In summary, both AO and XO activities increase in STZ-induced diabetic rats, and vitamin E and selenium supplementation can reduce these activities. The results also indicate that administration of vitamin E and selenium has hypolipidemic, hypoglycemic, and antioxidative effects. It decreases tissue damages in diabetic rats, too.
The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.
Lung cancer is one of the leading causes of cancer-related mortality worldwide. Although effective clinical drugs for treating advanced stages are available, interest in alternative herbal medicines has gained momentum. Herbal extracts are potent antioxidants that reportedly inhibit the growth of various cancer cell lines. In the present study, we investigated the effects of essential oils and hexane, methanolic, and aqueous extracts, obtained from various parts (bark, needles, and pollen) of Pinus eldarica against human lung cancer (A549) cells. First, the DPPH radical scavenging activities of P. eldarica extracts and essential oils were examined, which revealed that methanolic extracts presented higher antioxidant activity than the other extracts and essential oils. Next, A549 cells were exposed to various concentrations of the extracts and essential oils for 48 h. P. eldarica extracts/essential oil-treated lung cancer cells demonstrated a significant decrease in cell proliferation, along with an induction of apoptotic cell death, particularly, the pollen hexane extract, bark essential oil, and methanolic needle extract showed superior results, with IC50 values of 31.7, 17.9, and 0.3 μg/mL, respectively. In the cell cycle analysis, treatment of A549 cells with the methanolic needle and pollen hexane extracts led to apoptosis and accumulation of cells in the sub-G1 phase. Further, exposure to the bark essential oil and methanolic needle extract decreased the cell population in the G2/M phase. Notably, treatment with the pollen hexane extract, bark essential oil, and methanolic needle extract resulted in caspase-3 activation, poly (ADP-ribose) polymerase cleavage, Bcl-2 downregulation, and Bax and p53 regulation in A549 cells. Furthermore, these extracts and essential oils decreased the migration, and colony formation of A549 cells. These findings provide experimental evidence for a new therapeutic effect of P. eldarica against human lung cancer and suggest P. eldarica as a potential chemopreventive natural resource for developing novel cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.