A method of loaded patch antennas with shorting pins and erected walls in between patch antenna arrays is introduced to reduce surface wave and free space wave coupling in both E and Hplanes. This simple technique works equally well in both orientations by reducing coupling up to −19 dB and −15 dB (measured value) in E-plane and H-plane, respectively, as compared to a conventional patch antenna array. The scattering parameters are studied, and conclusions are made on amounts of mutually coupled power and the bandwidth of the rejection band (S 12 ). A parametric study of the variation in the level of mutual coupling with respect to height of the wall has been carried out in both E and H-planes. The simulation results are well verified through measurements.
In this paper, we discuss the impedance and radiation properties of planar UWB (any ultra wide frequency band) dual-polarized antennas. While their performance is usually defined using the impedance bandwidth, some applications require pattern stability over broad frequency bands. An analysis of the behaviour of three UWB dual-polarized antennas (Bowtie Antenna, Toothed Log-Periodic Antenna and Sinuous Antenna) showed interesting conclusions in terms of impedance matching bandwidth and radiation pattern steadiness. Starting from there, we then developed a method that consists in meandering the original structure. This method allows for miniaturization as well as radiation bandwidth enhancement. As a final result, an electrically small antenna with an impedance bandwidth of more than a decade and a steady radiation pattern over it has been developed.
The experimental results of a polymer microwave electro-optic antenna are reported. The device amplitude-modulates an optical input beam with a free-space propagating electromagnetic wave. By using a new dipole printed antenna, the electromagnetic energy is concentrated inside the device. An antenna factor of 168 dB=m is achieved with only 1 mm of electro-optic polymer.
Abstract-Development of new network standards leads to the use of bulky base station antennas. Their wide surfaces are not compatible with integration constraints in urban areas. As the antenna is composed of a high number of radiating elements, reducing the surface of each element is a way to reduce the antenna surface. Compact radiating element would allow integration of several antennas on the initial surface. In this paper, a new compact antenna is designed in order to obtain up to four antennas at the place of one. The antenna gain and horizontal Half Power Beamwidth (HPBW) should be maintained. The size reduction is obtained by dielectric embedding. In order to determine the dielectric characteristics in which the antenna must be immersed, a theoretical model is proposed in this paper. Simulations and measurements are provided to show the evolution of the antenna's performances in order to achieve manufacturer's specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.