Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid media. To demonstrate the application of this technique we determined the birefringence and the optical axis in fibrous tissue (rodent muscle) and in vivo rodent skin. PS-OCT has potentially useful applications in biomedical optics by imaging simultaneously the structural properties of turbid biological materials and their effects on the polarization state of backscattered light. This method may also find applications in material science for investigation of polarization properties (e.g., birefringence) in opaque media such as ceramics and crystals.
Optical coherence tomographic images of human dentin and enamel are obtained by use of polarization-sensitive optical coherence tomography. A birefringence effect in enamel (lambda = 856 nm) and light propagation along dentinal tubules are observed. The group index of refraction for both dentin and enamel was measured at 1.50 +/- 0.02 and 1.62 +/- 0.02, respectively.
Intraoperative tissue analysis is critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and intraoperative use of the MasSpec Pen technology for direct molecular analysis of in vivo and freshly excised tissues in the operating room. In this study, the MasSpec Pen was used by surgeons and surgical staff during 100 surgeries over a 12-month period, allowing rapid detection of rich mass spectral profiles from 715 in vivo and ex vivo analyses performed on thyroid, parathyroid, lymph node, breast, pancreatic, and bile duct tissues during parathyroidectomies, thyroidectomies, breast, and pancreatic neoplasia surgeries. The MasSpec Pen enabled gentle extraction and sensitive detection of various molecular species including small metabolites and lipids using a droplet of sterile water without causing apparent tissue damage. Notably, effective molecular analysis was achieved while no limitations to sequential histologic tissue analysis were identified and no device-related complications were reported for any of the patients. Collectively, this study shows that the MasSpec Pen system can be successfully incorporated into the operating room, allowing direct detection of rich molecular profiles from tissues with a seconds-long turnaround time that could be inform surgical and clinical decisions without disrupting tissue analysis workflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.