The finite element method was used to simulate indentation tests on a particle embedded in a matrix, to investigate the influence of the properties of the particle and the matrix, and the indentation depth on the measured hardness. The particle's work-hardening exponent and the mismatch in particle and matrix yield strength have a significant influence on the measured hardness. A particle-dominated indentation depth was identified, within which the measured nanoindentation hardness agrees very well with the true hardness of the particle material. Numerical results from the simulations of a wide range of material properties determined that the measured hardness is within 5% difference of the particle's true hardness when the indentation depth is less than 13.5% of the particle's radius. The results can be used in practice as a guideline to measure the hardness of a particle embedded in a matrix and provides the theoretical basis to develop a particle-embedded method to measure the hardness of individual particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.