SUMMARYThis paper presents a new mesh generation technique, paving, which meshes arbitrary 2-D geometries with an all-quadrilateral mesh. Paving allows varying element size distributions on the boundary as well as the interior of a region. The generated mesh is well formed (i.e. nearly square elements, elements perpendicular to boundaries, etc.) and geometrically pleasing (i.e. mesh contours tend to follow geometric contours of the boundary). In this paper we describe the theory behind this algorithmic/heuristic technique, evaluate the performance of the approach and present examples of automatically generated meshes.
The superconvergent patch derivative recovery method of Zienkiewicz and Zhu is enhanced by adding the squares of the residuals of the equilibrium equation and natural boundary conditions. In addition, a new conjoint polynomial for interpolating the local patch stresses over the element which significantly improves the local projection scheme is presented. Results show that in the 4-node quadrilateral, the equilibrium and boundary condition residuals usually improve accuracy but not the rate of convergence, whereas in the 9-node quadrilateral, results are mixed. The conjoint polynomial always improves the accuracy of the derivative field within the element as compared to the standard nodal interpolation, particularly in 4-node quadrilaterals.
SUMMARYThis paper introduces a new algorithm called whisker weaving for constructing unstructured, all-hexahedral finite element meshes. Whisker weaving is based on the Spatial Twist Continuum (STC), a global interpretation of the geometric dual of an all-hexahedral mesh. Whisker weaving begins with a closed, all-quadrilateral surface mesh bounding a solid geometry, then constructs hexahedral element connectivity advancing into the solid. The result of the whisker weaving algorithm is a complete representation of hex mesh connectivity only: Actual mesh node locations are determined afterwards.The basic step of whisker weaving is to form a hexahedral element by crossing or intersecting dual entities. This operation, combined with seaming or joining operations in dual space, is sufficient to mesh simple block problems. When meshing more complex geometries, certain other dual entities appear such as blind chords, merged sheets, and self-intersecting chords. Occasionally specific types of invalid connectivity arise. These are detected by a general method based on repeated STC edges. This leads into a strategy for resolving some cases of invalidities immediately.The whisker weaving implementation has so far been successful at generating meshes for simple block-type geometries and for some non-block geometries. Mesh sizes are currently limited to a few hundred elements. While the size and complexity of meshes generated by whisker weaving are currently limited, the algorithm shows promise for extension to much more general problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.