Acid rock drainage (ARD) is a major problem related to the management of mining wastes, especially concerning deposits containing sulphide minerals. Commonly used tests for ARD prediction include acid–base accounting (ABA) tests and the net acid generation (NAG) test. Since drainage quality largely depends on the ratio and quality of acid-producing and neutralising minerals, mineralogical calculations could also be used for ARD prediction. In this study, several Finnish waste rock sites were investigated and the performance of different static ARD test methods was evaluated and compared. At the target mine sites, pyrrhotite was the main mineral contributing to acid production (AP). Silicate minerals were the main contributors to the neutralisation potential (NP) at 60% of the investigated mine sites. Since silicate minerals appear to have a significant role in ARD generation at Finnish mine waste sites, the behaviour of these minerals should be more thoroughly investigated, especially in relation to the acid produced by pyrrhotite oxidation. In general, the NP of silicate minerals appears to be underestimated by laboratory measurements. For example, in the NAG test, the slower-reacting NP-contributing minerals might require a longer time to react than is specified in the currently used method. The results suggest that ARD prediction based on SEM mineralogical calculations is at least as accurate as the commonly used static laboratory methods.
The mobility of contaminants from mine waste can be assessed using different extraction methods. Aqua regia (AR) extraction is the most commonly used method in Finland. Another method is the analysis of leachate from net acid generation (NAG) tests, which is primarily designed for acid production potential assessment. We investigated the performance of single-addition NAG test leachate analysis and AR extraction in drainage quality prediction, using waste rock and drainage water samples from several Finnish waste rock sites. Our objective was to improve interpretation of the AR and single-addition NAG test leachate analysis results in drainage quality prediction. The AR extraction effectively reflected elements that occurred in elevated concentrations in drainage water, though it over-predicted Al, As, Cd, Co, Cu, and Ni in some circumneutral drainages, and Cr in general. The single-addition NAG test leachate analysis also performed well in assessing the mobility of contaminants including Al and Cr at acid mine drainage sites. As the contaminants tend to precipitate in neutral NAG test solution, the usability of the method in neutral mine drainage cases should be further investigated. Furthermore, the conclusions presented in this study are limited to waste rock samples collected from the surface of piles; future work will examine waste rock history, dump cores, drainage quality changes, etc. in more detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.