Electrification of non-road mobile machinery (NRMM) is a growing trend. This paper highlights the potential of electric and hybrid powertrains in different NRMM sectors and elaborates the factors that may hinder the development. The NRMM sectors, the vehicle types, their operation and duty cycles and market shares are described. Comparison between the typical duty cycles and operation of on-road and off-road vehicles is performed in order to gain insight into the specific features of off-road vehicles. The development of NRMM is subject to various drivers that range from customer needs to fuel and energy prices and rules and legislation.The main results of our study are 1) a review of the present status and analysis of the future trends and potential of electrification and hybridization of NRMM and, 2) propositions for overcoming the challenges that are related to the electrification and hybridization of NRMM.
This paper presents an electrical battery model for lithium-ion (Li-ion) batteries that can be used for dynamic simulations of hybrid electric non-road mobile machinery (NRMM) and other vehicles. Although the model has been developed mainly for large vehicle batteries with Li-ion based chemistries, it can be used for other battery chemistries as well. The parameters can be extracted from simple measurement sets. The model calculates e.g. state-of-charge, terminal voltage, and open-circuit voltage. In this paper, the model structure and parameter extraction are explained in detail, and a model for a 25.9 V lithium-ion polymer battery module with 40 Ah cells is presented. Parameters are extracted from experimental measurements and the model is validated by making another experiment with more realistic hybrid electric NRMM current profile.
Interest to hybridize mobile work machines has increased substantially during ongoing decade. Reasons for increasing interest are mainly tightening emission regulations and trend of rising fuel prices. To get better understanding for the benefits of hybridization, Helsinki University of Technology (TKK) has started 5 years project to research different aspects, how to improve fuel economy in mobile work machines. For case work machine is chosen an underground mining loader which will be first researched as conventional version and then it will be converted to a hybrid version. The tests for conventional version were done in the early 2009 and for hybridized version till the end of 2010. The results will be then compared to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.