Dataflow programming has received increasing attention in the age of multicore and heterogeneous computing. Modular and concurrent dataflow program descriptions enable highly automated approaches for design space exploration, optimization and deployment of applications. A great advance in dataflow programming has been the recent introduction of the RVC-CAL language. Having been standardized by the ISO, the RVC-CAL dataflow language provides a solid basis for the development of tools, design methodologies and design flows. This paper proposes a novel design flow for mapping RVC-CAL dataflow programs to parallel and heterogeneous execution platforms. Through the proposed design flow the programmer can describe an application in the RVC-CAL language and map it to multi-and many-core platforms, as well as GPUs, for efficient execution. The functionality and efficiency of the proposed approach is demonstrated by a parallel implementation of a video processing application and a run-time reconfigurable filter for telecommunications. Experiments are performed on GPU and multicore platforms with up to 16 cores, and the results show that for high-performance applications the proposed design flow provides up to 4× higher throughput than the state-ofthe-art approach in multicore execution of RVC-CAL programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.