The article provides an analysis and reports experimental validation of the various performance metrics of the LoRa low-power wide-area network technology. The LoRa modulation is based on chirp spread spectrum, which enables use of low-quality oscillators in the end device, and to make the synchronization faster and more reliable. Moreover, LoRa technology provides over 150 dB link budget, providing good coverage. Therefore, LoRa seems to be quite a promising option for implementing communication in many diverse Internet of Things applications. In this article, we first briefly overview the specifics of the LoRa technology and analyze the scalability of the LoRa wide-area network. Then, we introduce setups of the performance measurements. The results show that using the transmit power of 14 dBm and the highest spreading factor of 12, more than 60% of the packets are received from the distance of 30 km on water. With the same configuration, we measured the performance of LoRa communication in mobile scenarios. The presented results reveal that at around 40 km/h, the communication performance gets worse, because duration of the LoRa-modulated symbol exceeds coherence time. However, it is expected that communication link is more reliable when lower spreading factors are used.
Abstract-Appearing on the stage quite recently, the Low Power Wide Area Networks (LPWANs) are currently getting much of attention. In the current paper we study the susceptibility of one LPWAN technology, namely LoRaWAN, to the internetwork interferences. By means of excessive empirical measurements employing the certified commercial transceivers, we characterize the effect of modulation coding schemes (known for LoRaWAN as data rates (DRs)) of a transmitter and an interferer on probability of successful packet delivery while operating in EU 868 MHz band. We show that in reality the transmissions with different DRs in the same frequency channel can negatively affect each other and that the high DRs are influenced by interferences more severely than the low ones. Also, we show that the LoRa-modulated DRs are affected by the interferences much less than the FSK-modulated one. Importantly, the presented results provide insight into the network-level operation of the LoRa LPWAN technology in general, and its scalability potential in particular. The results can also be used as a reference for simulations and analyses or for defining the communication parameters for real-life applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.