Delivering cells to desired locations in the body is needed for disease treatments, tissue repairs, and various scientific investigations such as animal models for drug development. Here, we report the solid composite material that when embedded with viable cells, can temporarily keep cells alive. Using the material, we also show the fabrication of detachable dissolvable microneedles (DMNs) that can instantly deliver viable cells into skin tissue. B16-F10-murine-melanoma (B16-F10) and human-embryonickidney-293T (HEK293T) cells embedded in the solid matrix of the hyaluronic/polyvinylpyrolidone/maltose (HA/PVP/maltose) mixture show 50.6 ± 12.0 and 71.0 ± 5.96% survivals, respectively, when kept at 4 °C for 24 h. Detachable DMNs made of the HA/PVP/maltose mixture and loaded with B16-F10-cells were constructed, and the obtained DMN patches could detach the cell-loaded needles into the skin within 1 min of patch application. In vivo intradermal tumorgrafting mice with the DMNs containing 800 cells of B16-F10 developed tumors 10 times bigger in volume than tumors induced by hypodermic needle injection of suspension containing 100,000 cells. We anticipate this work to be a starting point for viable cell encapsulation in the solid matrix and viable cell delivery via DMNs.
Delivering bioactive compounds into skin tissue has long been a challenge. Using ex vivo porcine and rat skins, here we demonstrate that a detachable dissolvable microneedle (DDMN) array, a special dissolvable microneedle that allows needle detachment from the base within 2 min post administration, can effectively embed a model compound into epidermis and dermis. Diffusion of the compound from the needle embedding sites to the nearby skin tissue is demonstrated at various post administration periods. The relationship between the time that a conventional dissolvable microneedle array is left on skin without needle detachment from the base and the degree of skin surface abrasion at each microneedle penetration spot is also demonstrated on skin of human volunteers. Co-loading glutathione with vitamin C (vitC) can stabilize vitC in the DDMN. DDMN loaded with vitC and glutathione can help erasing post-acne-hyperpigmentation spots.
To minimize fast chemical degradation of retinal, we convert this aldehyde into proretinal nanoparticles (PRNs) by forming retinylidene moieties on chitosan and allowing the grafted polymers to assemble into nanoparticles, and then load the obtained PRNs into detachable microneedles made of 1:1 (by weight) hyaluronic acid/maltose. An embedment of the PRNs in the solid matrix of microneedles helps improving chemical stability of the grafted retinal; the loaded device can be kept at 25 °C for three months (longest time experimented) with less than 30% degradation of the retinylidene moieties. The presence PRNs in the hyaluronic acid-maltose matrix also help improving mechanical strength of the needles. Administration of PRN-loaded detachable microneedles on fresh porcine ear skin results in complete deposition of an array of microneedles in the skin tissue at the dept that spans both epidermis and dermis, as observed by stereomicroscopic and confocal uorescence microscopic analyses of the crosssectioned tissue pieces. Obvious diffusion of the PRNs from the originally embedded site of the needles in the skin tissue to the nearby location can be observed, and even distribution in the tissue is reached at 4 h post administration. Rats administered with single dose of PRN-loaded microneedles show signi cant increased epidermal thickness as compared to rats administered with unloaded microneedles. Both PRNloaded microneedles and unloaded microneedles produce no skin irritation in rats.
Delivering bioactive compounds into skin tissue has long been a challenge. Using ex vivo porcine and rat skins, here we demonstrate that a detachable dissolvable microneedle (DDMN) array, a special dissolvable microneedle that allows needle detachment from the base within 2 min post administration, can effectively embed a model compound into epidermis and dermis. Diffusion of the compound from the needle embedding sites to the nearby skin tissue is demonstrated at various post administration periods. The relationship between the time that a conventional dissolvable microneedle array is left on skin without needle detachment from the base and the degree of skin surface abrasion at each microneedle penetration spot is also demonstrated on skin of human volunteers. Co-loading glutathione with vitamin C (vitC) can stabilize vitC in the DDMN. DDMN loaded with vitC and glutathione can help erasing post-acne-hyperpigmentation spots.
To minimize fast chemical degradation of retinal, we convert this aldehyde into proretinal nanoparticles (PRNs) by forming retinylidene moieties on chitosan and allowing the grafted polymers to assemble into nanoparticles, and then load the obtained PRNs into detachable microneedles made of 1:1 (by weight) hyaluronic acid/maltose. An embedment of the PRNs in the solid matrix of microneedles helps improving chemical stability of the grafted retinal; the loaded device can be kept at 25 °C for three months (longest time experimented) with less than 30% degradation of the retinylidene moieties. The presence PRNs in the hyaluronic acid-maltose matrix also help improving mechanical strength of the needles. Administration of PRN-loaded detachable microneedles on fresh porcine ear skin results in complete deposition of an array of microneedles in the skin tissue at the dept that spans both epidermis and dermis, as observed by stereomicroscopic and confocal fluorescence microscopic analyses of the cross-sectioned tissue pieces. Obvious diffusion of the PRNs from the originally embedded site of the needles in the skin tissue to the nearby location can be observed, and even distribution in the tissue is reached at 4 h post administration. Rats administered with single dose of PRN-loaded microneedles show significant increased epidermal thickness as compared to rats administered with unloaded microneedles. Both PRN-loaded microneedles and unloaded microneedles produce no skin irritation in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.