Repetitive, low-dose (metronomic; METRO) drug administration of some anticancer agents can overcome drug resistance and increase drug efficacy in many cancers, but the mechanisms are not understood fully. Previously, we showed that METRO dosing of topotecan (TOPO) is more effective than conventional (CONV) dosing in aggressive human prostate cancer (PCa) cell lines and in mouse tumor xenograft models. To gain mechanistic insights into METRO-TOPO activity, in this study we determined the effect of METRO- and CONV-TOPO treatment in a panel of human PCa cell lines representing castration-sensitive/resistant, androgen receptor (+/−), and those of different ethnicity on cell growth and gene expression. Differentially expressed genes (DEGs) were identified for METRO-TOPO therapy and compared to a PCa patient cohort and The Cancer Genome Atlas (TCGA) database. The top five DEGs were SERPINB5, CDKN1A, TNF, FOS, and ANGPT1. Ingenuity Pathway Analysis predicted several upstream regulators and identified top molecular networks associated with METRO dosing, including tumor suppression, anti-proliferation, angiogenesis, invasion, metastasis, and inflammation. Further, the top DEGs were associated with increase survival of PCa patients (TCGA database), as well as ethnic differences in gene expression patterns in patients and cell lines representing African Americans (AA) and European Americans (EA). Thus, we have identified candidate pharmacogenomic biomarkers and novel pathways associated with METRO-TOPO therapy that will serve as a foundation for further investigation and validation of METRO-TOPO as a novel treatment option for prostate cancers.
Andrographolide analog, namely 19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide (or 3A.1) has been reported to be a potential anticancer agent for several types of cancer. Due to its poor aqueous solubility, 3A.1 was incorporated within self-assembly polymeric nanoparticles made of naphthyl-grafted succinyl chitosan (NSC), octyl-grafted succinyl chitosan (OSC), and benzyl-grafted succinyl chitosan (BSC). These 3A.1-loaded nanoparticles were nanosized (< 200 nm) and spherical in shape with a negative surface charge. 3A.1-loaded nanoparticles were produced using a dropping method, which 40% initial drug adding exhibited the highest entrapment efficiency. The release of 3A.1 from the 3A.1-loaded nanoparticles displayed a delayed release pattern. Under acidic conditions (pH 1.2), there was no free drug release. After the pH was adjusted to 6.8, a high cumulative 3A.1 release was obtained which was dependent on the hydrophobic moieties. These 3A.1-loaded pH-sensitive nanoparticles proved to be beneficial for specifically delivering anticancer drugs to the targeted colon cancer sites. In vitro anticancer activity against HT-29 found that the 3A.1-loaded nanoparticles had significantly lower IC than that of the free drug and promoted apoptosis. Additionally, in vitro wound-healing migration on HN-22 revealed that free 3A.1 and the 3A.1-loaded nanoparticles inhibited cell motility compared with untreated cells. These pH-sensitive amphiphilic chitosan nanoparticles may be promising nanocarriers for oral anticancer drug delivery to colorectal cancer cells. Graphical abstract ᅟ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.