This paper focused on the design of a digital front end channelizer useful in most software defined radios with the aim of exploiting the vast resources of digital signal processing which helps to achieve a portable, long lasting with extraordinary computational complexity software application that is capable of running at a lower power budget. Three channelization algorithms: per-channel, pipeline frequency transform and poly-phase fast Fourier transform uniform channelization algorithms were reviewed and designed for FM receivers using Altera Digital Signal Processing tool box in MATLAB/Simulink environment. The performance evaluation of the three algorithms were carried out with the estimation of the multiplication per input samples of operation of the system, signal strength level or signal to noise ratio and the compilation time of each algorithm. The result showed that the polyphase fast Fourier transforms and pipeline frequency transform had 24% decrease in computational requirement compared to per-channel which suggest a lower power consumption. Whereas, polyphase fast Fourier transform out performs pipeline frequency transform in terms of silicon cost.
With ever-increasing wireless network demands, low-complexity reconfigurable filter design is expected to continue to require research attention. Extracting and reconfiguring channels of choice from multi-standard receivers using a generalized discrete Fourier transform filter bank (GDFT-FB) is computationally intensive. In this work, a lower compexity algorithm is written for this transform. The design employs two different approaches: hybridization of the generalized discrete Fourier transform filter bank with frequency response masking and coefficient decimation method 1; and the improvement and implementation of the hybrid generalized discrete Fourier transform using a parallel distributed arithmetic-based residual number system (PDA-RNS) filter. The design is evaluated using MATLAB 2020a. Synthesis of area, resource utilization, delay, and power consumption was done on a Quartus 11 Altera 90 using the very high-speed integrated circuits (VHSIC) hardware description language. During MATLAB simulations, the proposed HGDFT algorithm attained a 66% reduction, in terms of number of multipliers, compared with existing algorithms. From co-simulation on the Quartus 11 Altera 90, optimization of the filter with PDA-RNS resulted in a 77% reduction in the number of occupied lookup table (LUT) slices, an 83% reduction in power consumption, and an 11% reduction in execution time, when compared with existing methods.
Reduction in hardware complexities is vital in communication. The major contribution to hardware complexity in many technologies is the multiplier utilized. This work present a proposed algorithm based on Farrow differential polynomial interpolation. This interpolator filter is a time varying poly-phase filter that uses fractional delay to reduce the integer sampling rates to fractional rates. It is a novel polynomial interpolator with less multiplier usage and inherent linear phase low pass filter. The digitized intermediate frequency (IF) by ADC is derived from mixing the signal RF with a local oscillator signal of a given fixed/variable frequency. Digitization using an analog to digital converter (ADC) capable of running at a sampling time of greater or twice the IF with maximum dynamic range of 100 MHz [This is contrary to the direct down conversion of multiband RF to band pass signals where under sampling is used. The algorithm was designed using Altera Digital Signal Processing tool box in MATLAB/ Simulink environment. When implemented it leads to reduction in the computational complexity, power consumption and silicon area. It also showed that a power gain of-15 dBm was observed as output for the GSM channel when compared with the existing modified farrow algorithms which have power gain of-9.4dBm and farrow polynomial algorithms with power gain of 10.59dBm. The decimation factor of 260 for a frequency range of 270.70 kHz was used. Thus a remarkable lower power gain, lower complexity and lower power consumption in mobile system was obtained when compared to farrow polynomial algorithm and modified farrow algorithm.
Realising a low-complexity Farrow channelisation algorithm for multi-standard receivers in software-defined radio is a challenging task. A Farrow filter operates best at low frequencies while its performance degrades towards the Nyquist region. This makes wideband channelisation in software-defined radio a challenging task with high computational complexity. In this paper, a hybrid Farrow algorithm that combines a modulated Farrow filter with a frequency response interpolated coefficient decimated masking filter is proposed for the design of a novel filter with low computational complexity. A design example shows that the HFarrow filter bank achieved multiplier reduction of 50%, 70% and 64%, respectively, in comparison with non-uniform modulated discrete Fourier transform (NU MDFT FB), coefficient decimated filter bank (CD FB) and interpolated coefficient decimated (ICDM) filter algorithms. The HFarrow filter bank is able to provide the same number of sub-band channels as other algorithms such as non-uniform modulated discrete Fourier transform (NU MDFT FB), coefficient decimated filter bank (CD FB) and interpolated coefficient decimated (ICDM) filter algorithms, but with less computational complexity.
E-Commerce has become very popular these days because it is convenient, reliable, and fast to use. In spite of these advantages, online buyers often experience difficulty in searching for products on the web, while online businesses are often overwhelmed by the rich data they have collected and find it difficult to promote products appropriate to specific customers. This paper proposes a hybrid recommender system that uses fuzzy logic to intelligently mine the requirements of each specific customer, together with some previous users' opinions about the product, to recommend a list of optimal products to meet users' needs. Experimental results of the proposed system with different brands of laptops prove its effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.