Metal cutting processes usually cause heat generation at the cutting zone (around the workpiece-tool intersection). The heat generated during these processes may cause different effects on both the workpiece and tool, this in turn may affect the finished product and the general performance of the machined piece. In this study, a review was done on various types of machining conditions available, effects of heat generated on the workpiece and tool, and the approaches adopted to reduce this heat at cutting zones. This study also focuses on the simulation of percentage ratio of heat removal. To handle the simulation, various approaches of heat removal methods were used to get the percentage ratio using the ansys version 19.1 software. It was discovered that heat generation causes two major types of wear on the tool, crater and flank wear, resulting in the reduction of cutting tool life as well as dimensional inaccuracy, surface damage and severe corrosion cases on the workpiece. Various heat reduction methods and coolant application types were as well studied and their merits and demerits were discussed.
The conversion of waste to wealth has recently grossed high attention as it possesses the ability to boost the economy of any nation; hence, this research. In this study, the characterization and investigation of mechanical properties of nano- flux (CaO) welding powder developed from bio-agrowaste (eggshell) was carried out. Mild, galvanized and stainless steel of plates and rods were used as parent metals for the experiment. Results obtained from hardness test in the base metal, weld joint and heat affected zone for the galvanized and mild steel plates with nano-flux powder gave the best hardness of 111.95, 120.30, 182.99 and 206.21, 164.85, 110.56 BHN respectively. The tensile stress obtained both for mild and stainless steel was 88.14 MPa while the tensile strain obtained for both plates were 0.0155 mm/mm. Microstructural analysis results shows an improvement in the structure, surface and patterns of the weld with the use of developed flux compared with imported flux. Hence eggshells can be recycled and used for developing flux powder for welding processes.
In this study, the performance of groundnut oil as an alternate cutting fluid was compared with that of soluble oil during machining of stainless steel. The temperature at the cutting zone, surface roughness and the chip formation were monitored under the two cutting conditions (soluble oil and vegetable oil). The machining parameters used were cutting speed (75 – 135 rev/min), feed rate (0.01 – 0.05 mm3/mm) and depth of cut (0.01 – 0.08 mm). The experiment was designed using Taguchi orthogonal array of Minitab 18 which generated a 9 run machining parameter mix for the experimentation. The Physiochemical properties of the various fluids were also analyzed to determine the properties and constituent elements of the cutting fluids. The actual machining of the stainless steel bar was done using a Colchester mastiff lathe machine. Results show that feed rate and cutting speed had the most significant effect on surface roughness during machining of stainless steel both with groundnut oil and soluble oil. Soluble oil was a better coolant but poorer in lubrication as vegetable oil reduced surface roughness more when used. Surface roughness value improved from 9.21μm during machining with soluble oil to 3.84μm during machining with groundnut oil which represented a 58.3% improvement. Hence, vegetable oil is therefore recommended as good alternative cutting fluid to soluble oil during machining of stainless steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.