The increase in demand for agricultural produce necessitates the continuous search for affordable, ecofriendly, readily available crop protectors, and food preservatives. Historically, the use of various chemicals was employed in controlling plant diseases and to maintain food quality. In the past few decades, several natural product-based alternatives have been discovered and projected as better alternatives to synthetic pesticides and other synthetic agrochemicals. Recent studies focusing on the application of different botanicals in crop protection and food preservation were carefully selected and reviewed. The application of plant extract in the biogenic preparation of nanoparticles was also reviewed. This review confirms that several natural products can be used as a safe replacement for synthetic agrochemicals. Different plant extracts have also served as feed for the synthesis of nanoparticle, which is increasingly applicable in crop protection and food preservation.
Quinoline is one of the most common nitrogen-containing heterocycles owing to its fascinating pharmacological properties and synthetic value in organic and pharmaceutical chemistry. Functionalization of this moiety at different positions has allowed for varying pharmacological activities of its derivative. Several publications over the last few decades have specified various methods of synthesis. This includes classical methods of synthesizing the primary quinoline derivatives and efficient methods that reduce reaction time with increased yield employing procedures that fulfill one of the twelve green chemistry principles, “safer solvent”. The metal nanoparticle-catalyzed reaction also serves as a potent and effective technique for the synthesis of quinoline with excellent atom efficiency. The primary focus of this review is to highlight the routes to synthesizing functionalized quinoline derivatives, including hybrids that have moieties with predetermined activities bound to the quinoline moiety which are of interest in synthesizing drug candidates with dual modes of action, overcoming toxicity, and resistance amongst others. This was achieved using updated literature, stating the biological activities and mechanisms through which these compounds administer relief. The ADMET studies and Structure-Activity Relationship (SAR) of novel derivatives were also highlighted to explore the drug-likeness of the quinoline-hybrids and the influence of substituent characteristics and position on the biological activity of the compounds.
Background of the study. Raphia hookeri G. Mann & H. Wendl (Arecaceae) is an important plant used in folkloric medicine to treat various ailments such as inflammation, tumor, microbial infections, paralysis, hypertension, and rheumatism, primarily in Africa and Asia. Aim and Objectives. The study was designed to investigate the antiplasmodial and antioxidant potencies of Raphia hookeri leaves, mesocarp, and epicarp using Plasmodium infected mice. The bioactive constituents were further explored via gas chromatography-mass spectrometry (GC-MS). Results. The presence of alkaloids, fats and oils, phenolic, and flavonoids was detected via the qualitative test which was confirmed from the result obtained from the GC-MS chromatogram of ethanolic leaves extract. The GC-MS chromatogram of the constituents analogous to the twenty peaks was analyzed as follows: dodecanoic acid (1.94%), 2-undecanone (3.42%), hexadecanoic acid (44.84%), oleic acid (7.45%), octadecanoic acid (8.41%), narcissidine (2.38%), 1-dotriacontanol (2.38%), α-sitosterol (2.02%), and lupeol (1.42%). The total phenolics and flavonoids of 118 and 23.3702 mg/g were analyzed in the leaves extract. The leave extract exhibited inhibitory activity of 73.49% against free radicals which could lead to inflammation. The extracts and chloroquine-treated groups showed significant decrease in percentage parasitaemia with pronounced activity observed in chloroquine groups. Conclusion. The curative and scavenging potencies of studied plant could be attributed to the metabolites analyzed and could guide the formulation of new pharmacophores against malaria infections and inflammations.
This research enthusiastically highlights the bio-adsorption of methylene blue (MB) by local, poultry, NaOH and citric acid modified ubiquitous eggshell (LES, NLES, CLES, PES, NPES and CPES) adsorbents. The microstructures of these adsorbents indicated that they had some surface functional moieties that were responsible for the adsorption of MB. The Langmuir isotherm and PSO model best fit the experiment data. The largest Langmuir monolayer adsorption capacity ${q_{max}}$, was 242.47 mg/g, with the largest MB initial concentration of 400 mg/L. This was a clear indication and a confirmation that MB adsorption by the powdered eggshells was chemisorptive. Moreover, the values of $F$, the thickness of the boundary layer/film were $\gt 0$, showing that the rate limiting step for the adsorption process was controlled by more than one diffusion mechanism. The values of $\Delta {G^\circ }$ for the adsorption of MB by the adsorbents indicated that the adsorption reactions were all non-feasible and non-spontaneous. The values for $\Delta {S^\circ }$ (J/K/mol) for LES, NLES and CPES for the uptake of MB showed decrease in the chaos or degree of randomness of the adsorption reactions, and the reverse was the case for PES, NPES and CLES for the uptake of MB, which showed increase in the chaos or degree of randomness of the adsorption. The adsorption of MB by LES, NLES and CPES gave $\Delta {H^\circ }$(kJ/mol) values which were indicative of endothermic nature of the adsorption systems, and the reverse was the case for the uptake of MB by PES, NPES and CLES, which was indicative of the exothermic nature of the adsorption systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.