Strong tracking filtering (STF) is a popular adaptive estimation method to effectively deal with state estimation for linear and nonlinear dynamic systems with inaccurate models or sudden change of state. The key of the STF is to use a time-variant fading factor, which can be evaluated based on the current measurement innovation in real time, to forcefully correct one step state prediction error covariance. The strong tracking filtering technology has been extensively applied in many practical systems, but the theoretical analysis is highly lacking. In an effort to better understand STF, a novel analysis framework is developed for the strong tracking filtering and some new problems are discussed for the first time. For this, we propose a new perspective that correcting the state prediction error covariance by using the fading factor can be thought of directly modifying the state model by correcting the covariance of the process noise. Based on this proposed point of view, the conditions for the STF function to be effective are deeply analyzed in a certain linear dynamic system. Meanwhile, issues of false alarm and alarm failure are also briefly discussed for the strong tracking filtering function. Some numerical simulation examples are demonstrated to validate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.