Living convenience, as a perceptual quality of life, is gradually playing an increasingly important role in the context of seeking livable cities. A high degree of living convenience positively affects urban vitality, livability, and daily physical activities. However, it is hard to achieve a quantitative measurement of this intangible, subjective issue. This study presents a data-informed analytical approach to measuring the human-scale living convenience using multi-sourced urban data and geodesign techniques. Firstly, according to classical theories, living convenience is translated as the co-presentation of accessed number and diversity of urban facilities. Based on that, this study applies multi-sourced urban data, including points of interest (PoIs), buildings, and street networks, to compute the living convenience of each building in the 15 min community–life circle. Through the geoprocessing tools developed by ArcGIS API for Python (ArcPy), the living convenience of millions of buildings in an entire city can be computed efficiently. Kaifeng City from Henan Province, China, is selected as the case study, and the verification from local experts in urbanism shows high accuracy. The capacity to measure intangible perception exhibits the potential for this analytical approach in urban planning practices. Several explorations have been conducted in this direction, including analyzing the spatial heterogeneity in Kaifeng City and planning decision support for bus station arrangement. In short, this study contributes to the development of human-centered planning by providing continuous measurements of an ‘unmeasurable’ quality across large-scale areas. Insights into the perceptual-based quality and detailed mapping of living conveniences in buildings can assist in efficient planning strategies toward more livable and sustainable urbanism.
Precise urban façade color is the foundation of urban color planning. Nevertheless, existing research on urban colors usually relies on manual sampling due to technical limitations, which brings challenges for evaluating urban façade color with the co-existence of city-scale and fine-grained resolution. In this study, we propose a deep learning-based approach for mapping the urban façade color using street-view imagery. The dominant color of the urban façade (DCUF) is adopted as an indicator to describe the urban façade color. A case study in Shenzhen was conducted to measure the urban façade color using Baidu Street View (BSV) panoramas, with city-scale mapping of the urban façade color in both irregular geographical units and regular grids. Shenzhen’s urban façade color has a gray tone with low chroma. The results demonstrate that the proposed method has a high level of accuracy for the extraction of the urban façade color. In short, this study contributes to the development of urban color planning by efficiently analyzing the urban façade color with higher levels of validity across city-scale areas. Insights into the mapping of the urban façade color from the humanistic perspective could facilitate higher quality urban space planning and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.