Tungsten carbide is one of the most promising electrocatalysts for the hydrogen evolution reaction, although it exhibits sluggish kinetics due to a strong tungsten-hydrogen bond. In addition, tungsten carbide’s catalytic activity toward the oxygen evolution reaction has yet to be reported. Here, we introduce a superaerophobic nitrogen-doped tungsten carbide nanoarray electrode exhibiting high stability and activity toward hydrogen evolution reaction as well as driving oxygen evolution efficiently in acid. Nitrogen-doping and nanoarray structure accelerate hydrogen gas release from the electrode, realizing a current density of −200 mA cm−2 at the potential of −190 mV vs. reversible hydrogen electrode, which manifest one of the best non-noble metal catalysts for hydrogen evolution reaction. Under acidic conditions (0.5 M sulfuric acid), water splitting catalyzed by nitrogen-doped tungsten carbide nanoarray starts from about 1.4 V, and outperforms most other water splitting catalysts.
Ternary NiCoFe‐layered double hydroxide (NiCoIIIFe‐LDH) with Co3+ is grafted on nitrogen‐doped graphene oxide (N‐GO) by an in situ growth route. The array‐like colloid composite of NiCoIIIFe‐LDH/N‐GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCoIIIFe‐LDH/N‐GO array has a 3D open structure with less stacking of LDHs and an enlarged specific surface area. The hierarchical structure design and novel material chemistry endow high activity propelling O2 redox. By exposing more amounts of Ni and Fe active sites, the NiCoIIIFe‐LDH/N‐GO illustrates a relatively low onset potential (1.41 V vs reversible hydrogen electrode) in 0.1 mol L−1 KOH solution under the OER process. Furthermore, by introducing high valence Co3+, the onset potential of this material in ORR is 0.88 V. The overvoltage difference is 0.769 V between OER and ORR. The key factors for the excellent bifunctional catalytic performance are believed to be the Co with a high valence, the N‐doping of graphene materials, and the highly exposed Ni and Fe active sites in the array‐like colloid composite. This work further demonstrates the possibility to exploit the application potential of LDHs as OER and ORR bifunctional electrochemical catalysts.
Aggregation-induced emission has been extensively found in organic compounds and metal complexes. In contrast, aggregation-induced electrochemiluminescence (AI-ECL) is rarely observed. Here, we employ two tridentate ligands [2,2':6',2″-terpyridine (tpy) and 1,3-bis(1 H-benzimidazol-2-yl)benzene (bbbiH)] to construct a cyclometalated iridium(III) complex, [Ir(tpy)(bbbi)] (1), showing strong AI-ECL. Its crystal structure indicates that neighboring [Ir(tpy)(bbbi)] molecules are connected through both π-π-stacking interactions and hydrogen bonds. These supramolecular interactions can facilitate the self-assembly of complex 1 into nanoparticles in an aqueous solution. The efficient restriction of molecular vibration in these nanoparticles leads to strong AI-ECL emission of complex 1. In a dimethyl sulfoxide-water (HO) mixture with a gradual increase in the HO fraction from 20% to 98%, complex 1 showed a ∼39-fold increase in the electrochemiluminescence (ECL) intensity, which was ∼4.04 times as high as that of [Ru(bpy)] under the same experimental conditions. Moreover, the binding of bovine serum albumin to the nanoparticles of complex 1 can improve the ECL emission of this complex, facilitating the understanding of the mechanism of AI-ECL for future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.