In Huang-Huai-Hai plain of China, farmers collect the maize straw for livestock during maize harvest to increase their revenue. To maintain the sustainable productivity of the soil, all straw after the wheat harvest is returned to the field. This straw brings difficulties in the no-till seeding for maize after wheat harvest, and thus it is necessary to develop efficient no-till seeders that can cope with heavy residue and improve sowing quality. In this work, we designed a wide-strip-till no-till pneumatic maize (WNPM) seeder to satisfy the need in this plain. The key parameters of the opposite-placed anti-blocking mechanism of the WNPM seeder were determined via the discrete element method (DEM) technology, while the parameters of the pneumatic maize seed meter were specified using the coupled simulation of computational fluid dynamics (CFD) and DEM. We also carried out field experiment to test the performance of our machine. Under the operating speed of 8 km/h, the soil disturbance was 38.2%. Moreover, the straw cleaning rate achieved 94.4% in the seeding belt while the residue cover index of the seed plot was over 58%, and the seeding performance was improved significantly. The qualified seed spacing index, uniformity variation coefficient, qualified index of sowing depth and variation coefficient of sowing depth were 96.6%, 19.1%, 95.1% and 3.2%, respectively. In general, the WNPM seeder improves the working efficiency of maize sowing because both the reliable working speed and the sowing quality were increased. These results are of considerable importance for crop production in Huang-Huai-Hai plain of China.
Background
Colorectal cancer (CRC) has become the second deadliest cancer in the world and severely threatens human health. An increasing number of studies have focused on the role of the RNA helicase DEAD-box (DDX) family in CRC. However, the mechanism of DDX10 in CRC has not been elucidated.
Methods
In our study, we analysed the expression data of CRC samples from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Subsequently, we performed cytological experiments and animal experiments to explore the role of DDX10 in CRC cells. Furthermore, we performed Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein–protein interaction (PPI) network analyses. Finally, we predicted the interacting protein of DDX10 by LC–MS/MS and verified it by coimmunoprecipitation (Co-IP) and qPCR.
Results
In the present study, we identified that DDX10 mRNA was extremely highly expressed in CRC tissues compared with normal colon tissues in the TCGA and GEO databases. The protein expression of DDX10 was measured by immunochemistry (IHC) in 17 CRC patients. The biological roles of DDX10 were explored via cell and molecular biology experiments in vitro and in vivo and cell cycle assays. We found that DDX10 knockdown markedly reduced CRC cell proliferation, migration and invasion. Then, we constructed a PPI network with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA) showed that DDX10 was closely related to RNA splicing and E2F targets. Using LC–MS/MS and Co-IP assays, we discovered that RPL35 is the interacting protein of DDX10. In addition, we hypothesize that RPL35 is related to the E2F pathway and the immune response in CRC.
Conclusions
In conclusion, provides a better understanding of the molecular mechanisms of DDX10 in CRC and provides a potential biomarker for the diagnosis and treatment of CRC.
BACKGROUND:Little was known about gastrointestinal perforation secondary to foreign body in adults, which was only documented by several case series reports. The aim of this study was to characterize it with comparative methods.
China is the largest vegetable producer in the world, and vegetable production is more geographically concentrated in the Huang-Huai-Hai region and the Yangtze River Basin. There are significant challenges ahead for increasing the average yields of the vegetables in this region. The effects of a cultivation system, a mulched ridge with a double row (MRDR), were evaluated by using the 2ZBX-2A vegetable transplanter newly designed in this paper. The key parameters of the equipment were designed and optimized by using the human–computer interaction method and the discrete element method according to agronomy requirements. Compared with the traditional ridge (TR) system on two typical solanaceous vegetables (eggplant and capsicum), the uniformities of the plant spacing and the planting depth in the MRDR system were significantly improved. Finally, the fresh fruit yield in the MRDR system increased significantly (p < 0.05) by 40.8% and 35.3% compared with that in the TR system for eggplant and capsicum, respectively. In addition, the water use efficiency (WUE) was also 54.9~59.7% higher under the MRDR system than under the TR system. All the results indicate that the MRDR system has the potential to improve the yields and WUE of solanaceous vegetables in the Huang-Huai-Hai Plain of China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.