The employment of ultra‐thin lithium metal anode with high loading cathode is the key to realizing high‐energy‐density rechargeable lithium batteries. Ultra‐thin lithium foils are routinely loaded on a copper substrate in batteries, however, the close contact of these two metals causes galvanic corrosion in the presence of electrolyte, which results in irreversible consumption of lithium and decomposition of electrolyte. Herein, a lightweight and highly conductive flexible graphite paper (GP) is applied to replace Cu foil as the current collector for lithium metal anode. It is demonstrated that the application of GP prevents galvanic corrosion and maintains intimate and steady contact between Li foil and GP current collector during cycling, thereby improving the electrochemical performance of the battery. A 1.08 Ah pouch cell assembled with Li@GP anode and LiNi0.8Co0.1Mn0.1O2 cathode exhibits a long lifetime of 240 cycles with a capacity retention of 91.6% under limited Li, high cathode loading and lean electrolyte conditions.
As an indispensable part of the electrodes in lithium-ion batteries, conductive additives play an important role not only in electron transport, but in the electrode structure as they form carbon-binder domains (CBD) that are located in the voids among active materials. The latter is expected to have a significant effect on Li-ion diffusion in the electrode, but has been paid little attention in previous research reports. Accordingly, two typical types of conductive additives with distinct structures, including carbon black and graphene, are employed in LiNi0.8Co0.1Mn0.1O2 (NCM 811) electrodes to investigate this important issue in this work by quantitative analysis of Li-ion diffusion resistance (Rion) and charge transfer resistance (Rct) by electrochemical impedance spectroscopy (EIS) using a symmetric cell configuration combined with the transmission line model. The EIS results confirm that addition of graphene is more effective to enhance Li-ion diffusion comparing with carbon black. Meanwhile, for constructing better CBD, graphene and carbon black are equally crucial, and the combination of both is necessary to achieve the best rate performance, as Li-ion diffusion, electronic conductivity, and charge transfer process which is affected by the electroactive surface area in the electrode should be taken into consideration at the same time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.