This study aims to review novel materials for solid oxide fuel cell (SOFC) applications covered in literature. Thence, it was found that current SOFC operating conditions lead to issues, such as carbon surface deposition, sulfur poisoning and quick component degradation at high temperatures, which make it unsuitable for a few applications. Therefore, many researches are focused on cell performance enhancement through replacing the materials being used in order to improve properties and/or reduce operating temperatures. Most modifications in the anode aim to avoid some issues concerning conventionally used Ni-based materials, such as carbon deposition and sulfur poisoning, besides enhancing catalytic activity, once this component is directly exposed to the fuel. It was also found literature about the cathode with the aim of developing a material with enhanced properties in a wider temperature range, which has been compared to the currently used one: LSM perovskite (La 1-x Sr x MnO 3). Novel electrolyte materials can have ionic or protonic conductivity, thus performance degradation must be avoided at several operating conditions. In order to enhance its electrochemical performance, different materials for electrodes (cathode and anode) and electrolytes have been assessed herein.
-In general, lodging has been controlled by restricting nitrogen fertilizer application and/or using short cultivars. Growth retardants can also be used to solve this problem.The objective of this study was to evaluate the effect of rates and application times of three growth retardants on Pioneiro wheat cultivar. The trial was carried out in Viçosa-MG, from May to September 2005, in a factorial and hierarchical scheme, in a randomized block design with four replications and a control treatment. The treatments consisted of 500, 1,000 and 1,500 g ha -1 of chlormequat; 62.5, 125 and 187.5 g ha -1 of trinexapacethyl and 40, 80 and 120 g ha -1 of paclobutrazol applied at growth stages 6 or 8, growth stage used on the scale of Feeks and Large, and a control treatment without growth retardant application. Only trinexapac-ethyl and chlormequat were efficient in reducing plant height; the effect of chlormequat and paclobutrazol on plant height was independent of the application time, but the trinexapac-ethyl at growth stage 8 produced shorter plant height than at stage 6. Increasing growth retardant rates produced shorter plant heights; chlormequat and paclobutrazol did not affect grain yield. However, the highest trinexapac-ethyl rates reduced wheat yield.
Introduction Tendinitis affects a substantial number of people in several occupations involving repetitive work or direct trauma. Iontophoresis is a therapeutic alternative used in the treatment of injury during the inflammatory phase. In recent years, gold nanoparticles (GNP) have been studied due to their therapeutic anti-inflammatory capacity and as an alternative to the transport of several proteins. Purpose This study evaluates the therapeutic effects of iontophoresis using GNPs and diclofenac diethylammonium on inflammatory parameters in rats challenged with traumatic tendinitis. Methods Wistar rats were divided in three treatment groups (n = 15): (1) iontophoresis + diclofenac diethylammonium; (2) iontophoresis + GNP; and (3) iontophoresis + diclofenac diethylammonium + GNP. External control was formed by challenged tendons without treatment (n = 15). Iontophoresis was administered using 0.3 mA direct current on 1.5 cm 2 electrodes. Results The levels of both inflammatory cytokines were significantly higher in untreated challenged rats, when compared with the control (5.398 ± 234 for interleukin 1 beta and 6.411 ± 432 for tumor necrosis factor alpha), which confirms the occurrence of an inflammatory stage in injury ( P < 0.05). A significant decrease was observed in expression of cytokines interleukin 1 beta in the three treatment groups, in comparison with untreated challenged tendons, although, in the group treated with diclofenac and GNP, results were similar to the control (1.732 ± 239) ( P < 0.05). Concerning tumor necrosis factor alpha, only the group treated with the association diclofenac and GNPs presented decreased levels, compared with the control (3.221 ± 369) ( P < 0.05). Conclusion The results show the efficacy of drug administration using direct current to treat tendinitis in an animal model, and the potential anti-inflammatory, carrier, and enhancing effects of GNPs in iontophoresis.
BackgroundThe purpose of this study was to evaluate the antimicrobial activity of two nitric oxide donors, ie, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC), against clinical isolates from patients with infectious keratitis.MethodsReference broth microdilution assays were performed to determine the minimum inhibitory and bactericidal concentrations for GSNO and SNAC against four American Type Culture Collection strains and 52 clinical isolates from patients with infectious keratitis as follows: 14 (26.9%) Pseudomonas species; 13 (25.0%) coagulase-negative Staphylococci; 10 (19.2%) Staphylococcus aureus; nine (17.3%) Serratia marcescens; and six (11.5%) Enterobacter aerogenes. Sterility control and bacterial growth control were also performed.ResultsSNAC showed lower minimum inhibitory and bactericidal concentrations than GSNO for all clinical isolates from patients with infectious keratitis. For Gram-positive bacteria, mean minimum inhibitory and bactericidal concentrations were 2.1 ± 1.3 and 8.6 ± 3.8 mM for SNAC and 4.6 ± 3.2 and 21.5 ± 12.5 mM for GSNO (P < 0.01). For Gram-negative bacteria, mean minimum inhibitory and bactericidal concentrations were 3.3 ± 1.4 and 6.1 ± 3.4 mM for SNAC and 12.4 ± 5.4 and 26.5 ± 10.1 mM for GSNO (P < 0.01). The minimum bactericidal to inhibitory concentration ratio was ≤8 in 100% of all isolates tested for SNAC and in 94.2% tested for GSNO.ConclusionsSNAC and GSNO had effective inhibitory and bactericidal effects against bacterial isolates from keratitis. SNAC showed greater antimicrobial activity than GSNO against all bacteria. Gram-positive bacteria were more susceptible to the inhibitory and bactericidal effects of the S-nitrosothiols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.