Biome-specific soil respiration (Rs) has important yet different roles in both the carbon cycle and climate change from regional to global scales. To date, no comparable studies related to global biome-specific Rs have been conducted applying comprehensive global Rs databases. The goal of this study was to develop artificial neural network (ANN) models capable of spatially estimating global Rs and to evaluate the effects of interannual climate variations on 10 major biomes. We used 1976 annual Rs field records extracted from global Rs literature to train and test the ANN models. We determined that the best ANN model for predicting biome-specific global annual Rs was the one that applied mean annual temperature (MAT), mean annual precipitation (MAP), and biome type as inputs (r 2 = 0.60). The ANN models reported an average global Rs of 93.3 ± 6.1 Pg C yr −1 from 1960 to 2012 and an increasing trend in average global annual Rs of 0.04 Pg C yr −1 . Estimated annual Rs increased with increases in MAT and MAP in cropland, boreal forest, grassland, shrubland, and wetland biomes. Additionally, estimated annual Rs decreased with increases in MAT and increased with increases in MAP in desert and tundra biomes, and only significantly decreased with increases in MAT (r 2 = 0.87) in the savannah biome. The developed biome-specific global Rs database for global land and soil carbon models will aid in understanding the mechanisms underlying variations in soil carbon dynamics and in quantifying uncertainty in the global soil carbon cycle.
Climate projections in Sub-Saharan Africa (SSA) forecast an increase in the intensity and frequency of droughts with implications for maize production. While studies have examined how maize might be affected at the continental level, there have been few national or sub-national studies of vulnerability. We develop a vulnerability index that combines sensitivity, exposure and adaptive capacity and that integrates agroecological, climatic and socio-economic variables to evaluate the national and spatial pattern of maize yield vulnerability to droughts in Uganda. The results show that maize yields in the north of Uganda are more vulnerable to droughts than in the south and nationally. Adaptive capacity is higher in the south of the country than in the north. Maize yields also record higher levels of sensitivity and exposure in the north of Uganda than in the south. Latitudinally, it is observed that maize yields in Uganda tend to record higher levels of vulnerability, exposure and sensitivity towards higher latitudes, while in contrast, the adaptive capacity of maize yields is higher towards the lower latitudes. In addition to lower precipitation levels in the north of the country, these observations can also be explained by poor soil quality in most of the north and socio-economic proxies, such as, higher poverty and lower literacy rates in the north of Uganda.
Climate change adaptation now occupies central stage on the agenda of most environmental initiatives in Africa. Our current understanding on the state of adaptation is limited, however, both globally and in Africa in particular. This study examines the status of adaptation in the Sahel by reviewing the primary peer review literature that reports climate change adaptation actions. Based on an analysis of 70 peer review papers that document 414 discrete adaptations, we create a snapshot of adaptations developed between 1975 and 2015. The results show that Kenya has the highest number of reported adaptation actions (75 or 18.1%). The percentages indicate that the adaptive capacity of the entire study area is generally low for all the countries being that the highest country-level percentage is recorded in Kenya (18%). Regionally, West Africa has more adaptation actions (261 or 63%) when compared to other regions of the Sahel. Regional level percentages suggest a higher level of adaptation at the regional level being that the percentage falls within the high scale range. The most commonly used adaptation actions reported are income diversification and water harnessing respectively. When categorized, technically related adaptation actions dominate the adaptation charts. The decade 2008-2016 recorded the highest number of adaptations (65.2 %). Adaptation actions are also reported to be triggered by climatic and non-climatic drivers which both record high frequencies but the climatic drivers (98%) of adaptation are slightly dominant relative to the non-climatic drivers (95%).
We analyzed the perceptions of resource persons from three stakeholder groups on the benefits, challenges and opportunities offered by joint forest management (JFM) in the Ziro province of Southern Burkina Faso. In other words, a strength, weaknesses, opportunities, and threats (SWOT) approach in combination with an analytic hierarchy process (AHP) was applied. Results reveal that resource persons of the three stakeholder groups perceive the positive aspects of JFM to outweigh the negative aspects. In addition, favorable institutional setup received the highest overall factor score for strength. Inadequate enforcement of the management plans is the weakness with the highest score and the overall priority score for weaknesses was highest for resource persons from the Ministry of Environment and Sustainable Development (MESD). On the other hand, better community relations received the highest overall factor for opportunities while uncertainty in decision making at higher levels was perceived as the most important threat to JFM in the Ziro province of Southern Burkina Faso. Therefore, differences in views and addressing realities on the ground requires the participation of all stakeholders in the design, implementation and follow-up of JFM to arrive at a consensus that is capable of delivering the twin challenges of environmental protection and rural development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.