Many articles have summarized the changing epidemiology of Clostridium difficile infections (CDI) in humans, but the emerging presence of C. difficile in foods and animals and possible measures to reduce human exposure to this important pathogen have been infrequently addressed. CDIs have traditionally been assumed to be restricted to health-care settings. However, recent molecular studies indicate that this is no longer the case; animals and foods might be involved in the changing epidemiology of CDIs in humans; and genome sequencing is disproving person-to-person transmission in hospitals. Although zoonotic and foodborne transmission have not been confirmed, it is evident that susceptible people can be inadvertently exposed to C. difficile from foods, animals, or their environment. Strains of epidemic clones present in humans are common in companion and food animals, raw meats, poultry products, vegetables, and ready-to-eat foods, including salads. In order to develop science-based prevention strategies, it is critical to understand how C. difficile reaches foods and humans. This review contextualizes the current understanding of CDIs in humans, animals, and foods. Based on available information, we propose a list of educational measures that could reduce the exposure of susceptible people to C. difficile. Enhanced educational efforts and behavior change targeting medical and non-medical personnel are needed.
Manure from draft animals deposited in fields during vegetable and fruit production may serve as a potential source of preharvest pathogen contamination of foods. To better quantify this risk, we determined the prevalence of Escherichia coli O157:H7 in horses. Between June and September 2009, freshly voided fecal samples were collected from horses stabled on 242 separate premises in Ohio, USA. Overall, the prevalence of E. coli O157:H7 was 1 of 242 (0.4% prevalence, 95% confidence interval [CI] = 0.01 to 2.28). E. coli O157:H7 was recovered from none of the 107 equine fecal samples (0% prevalence, 95% CI = 0.00 to 3.39) that originated from locations without ruminant presence, and only 1 of the 135 horse fecal samples (0.7% prevalence, 95% CI = 0.02 to 4.06) from sites where ruminants were also present. The lone positive sample was collected from a horse that was costabled with a goat. Subsequent sampling at that location identified indistinguishable subtypes of E. coli O157:H7 present in the cohoused goat, in the environment, insects, sheep, and other goats housed in an adjacent field. E. coli O157:H7 was not isolated from the five subsequent samples from this horse. These data indicate that E. coli O157:H7 carriage by horses is an uncommon event.
Differences in vegetable production methods utilized by American growers create distinct challenges for Extension personnel providing food safety training to producer groups. A program employing computers and projectors will not be accepted by an Amish group that does not accept modern technology. We have developed an outreach program that covers all pertinent food safety information in a manner that is acceptable to each of our target audiences. Utilizing audience targeted programming, small group of food safety professionals will be able to reach a myriad of different types of producers and help them provide the consumer with a wholesome product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.