The interest in the Coordinative Chain Transfer Polymerization (CCTP) of a family of naturally occurring hydrocarbon monomers, namely terpenes, for the production of high-performance rubbers is increasing year by year. In this work, the synthesis of poly(β-myrcene) via CCTP is introduced, using neodymium versatate (NdV3), diisobutylaluminum hydrade (DIBAH) as the catalytic system and dimethyldichlorosilane (Me2SiCl2) as the activator. A bimodal distribution in the GPC signal reveals the presence of two populations at low conversions, attributable to dormants (arising from reversible chain transfer reactions) and dead chains (arising from termination and irreversible chain transfer reactions); a unimodal distribution is generated at medium and high conversions, corresponding to the dominant species, the dormant chains. Additionally, a mathematical kinetic model was developed based on the Method of Moments to study a set of selected experiments: ([β-myrcene]0:[NdV3]0:[DIBAH]0:[Me2SiCl2]0 = 660:1:2:1, 885:1:2:1, and 533:1:2:1). In order to estimate the kinetic rate constant of the systems, a minimization of the sum of squared errors (SSE) between the model predicted values and the experimental measurements was carried out, resulting in an excellent fit. A set of the Arrhenius parameters were estimated for the ratio [β-myrcene]0:[NdV3]0:[DIBAH]0:[Me2SiCl2]0 = 660:1:2:1 in a temperature range between 50 to 70 °C. While the end-group functionality (EGF) was predominantly preserved as the ratio [β-myrcene]0:[NdV3]0 was decreased, higher catalytic activity was obtained with a high ratio.
The present investigation involves the coordinative chain transfer polymerization (CCTP) of biobased terpenes in order to obtain sustainable polymers from myrcene (My) and farnesene (Fa), using the ternary Ziegler–Natta catalyst system comprising [NdV3]/[Al(i-Bu)2H]/[Me2SiCl2] and Al(i-Bu)2H, which acts as cocatalyst and chain transfer agent (CTA). The polymers were produced with a yield above 85% according to the monomeric consumption at the end of the reaction, and the kinetic examination revealed that the catalyst system proceeded with a reversible chain transfer mechanism in the presence of 15–30 equiv. of CTA. The resulting polyterpenes showed narrow molecular weight distributions (Mw/Mn = 1.4–2.5) and a high percent of 1,4-cis microstructure in the presence of 1 equiv. of Me2SiCl2, having control of the molecular weight distribution in Ziegler–Natta catalytic systems that maintain a high generation of 1,4-cis microstructure.
The overuse of fossil-based resources to produce thermoplastic materials and rubbers is dramatically affecting the environment, reflected in its clearest way as global warming. As a way of reducing this, multiple efforts are being undertaken including the use of more sustainable alternatives, for instance, those of natural origin as the main feedstock alternative, therefore having a lower carbon footprint. Contributing to this goal, the synthesis of bio-based rubbers based on β-myrcene and trans-β-farnesene was addressed in this work. Polymyrcene (PM) and polyfarnesene (PF) were synthesized via coordination polymerization using a neodymium-based catalytic system, and their properties were compared to the conventional polybutadiene (PB) and polyisoprene (PI) also obtained via coordination polymerization. Moreover, different average molecular weights were also tested to elucidate the influence over the materials’ properties. The crosslinking of the rubbers was carried out via conventional and efficient vulcanization routes, comparing the final properties of the crosslinking network of bio-based PM and PF with the conventional fossil-based PB and PI. Though the mechanical properties of the crosslinked rubbers improved as a function of molecular weight, the chemical structure of PM and PF (with 2 and 3 unsaturated double bonds, respectively) produced a crosslinking network with lower mechanical properties than those obtained by PB and PI (with 1 unsaturated double bond). The current work contributes to the understanding of improvements (in terms of crosslinking parameters) that are required to produce competitive rubber with good sustainability/performance balance.
Polyaniline (PANI) composites have gained momentum as supercapacitive materials due to their high energy density and power density. However, some drawbacks in their performance remain, such as the low stability after hundreds of charge-discharge cycles and limitations in the synthesis scalability. Herein, we report for the first time PANI-Graphitic oxidized carbon nitride composites as potential supercapacitor material. The biomimetic polymerization of aniline assisted by hematin, supported by phosphorous and oxygen-modified carbon nitrides (g-POCN and g-OCN, respectively), achieved up to 89% yield. The obtained PAI/g-POCN and PANI/g-OCN show enhanced electrochemical properties, such as conductivity of up to 0.0375 S/cm, specific capacitances (Cs) of up to 294 F/g (at high current densities, 5 A/g) and a stable operation after 500 charge-discharge cycles (at 3 A/g). In contrast, the biomimetic synthesis of Free PANI, assisted by stabilized hematin in cosolvents, exhibited lower performance properties (65%). Due to their structural differences, the electrochemical properties of Free PANI (conductivity of 0.0045 S/cm and Cs of up to 82 F/g at 5 A/g) were lower than those of nanostructured PANI/g-POCN and g-OCN supports, which provide stability and improve the properties of biomimetically synthesized PANI. This work reveals the biomimetic synthesis of PANI, assisted by hematin supported by modified carbon nitrides, as a promising strategy to produce nanostructured supercapacitors with high performance.
The present work presents phenomenological models to describe the coordination polymerization of β‐myrcene using the Ziegler–Natta catalyst system composed by neodymium versatate (NdV3), diisobutylaluminum hydride (DIBAH), and dimethyldichlorosilane. The kinetic parameters required to simulate the reactions are estimated, and the amount of DIBAH used as a chain transfer agent (CTA) is obtained by a data reconciliation strategy since it can participate in side reactions. Several experiments are performed at different conditions to evaluate the impact of key operation variables on the control of monomer conversion and average molar masses. It is shown that the initial NdV3, β‐myrcene, and DIBAH concentrations exert strong influences on the course of the polymerization. The kinetic mechanism of Coordinative Chain Transfer Polymerization (CCTP) fits well with the data of final average molar masses and monomer conversion, while the dynamic trajectories of these variables are fitted better by kinetic mechanisms of more conventional coordination polymerizations, considering site deactivation and termination by chain transfer. In all cases, the proposed models are able to predict the experimental data well after successful parameter estimation and reconciliation of CTA concentrations, indicating that the kinetic mechanism can be characterized by different kinetic regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.