The extent to which heterogeneity within mesenchymal stem cell (MSC) populations is related to function is not understood. Using the archetypal MSC in vitro surface marker, CD90/Thy1, here we show that 30% of the MSCs in the continuously growing mouse incisor express CD90/Thy1 and these cells give rise to 30% of the differentiated cell progeny during postnatal development. In adulthood, when growth rate homeostasis is established, the CD90/Thy1+ MSCs decrease dramatically in number. When adult incisors are cut, the growth rate increases to rapidly re-establish tooth length and homeostasis. This accelerated growth rate correlates with the re-appearance of CD90/Thy+ MSCs and re-establishment of their contribution to cell differentiation. A population of Celsr1+ quiescent cells becomes mitotic following clipping and replenishes the CD90/Thy1 population. A sub-population of MSCs thus exists in the mouse incisor, distinguished by expression of CD90/Thy1 that plays a specific role only during periods of increased growth rate.
Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.quantitative trait loci | tooth/taste bud development | placode patterning | bipotency | plasticity
BackgroundLake Malawi cichlids represent one of a growing number of vertebrate models used to uncover the genetic and developmental basis of trait diversity. Rapid evolutionary radiation has resulted in species that share similar genomes but differ markedly in phenotypes including brains and behavior, nuptial coloration and the craniofacial skeleton. Research has begun to identify the genes, as well as the molecular and developmental pathways that underlie trait divergence.ResultsWe assemble a compendium of gene expression for Lake Malawi cichlids, across pharyngula (the phylotypic stage) and larval stages of development, encompassing hundreds of gene transcripts. We chart patterns of expression in Bone morphogenetic protein (BMP), Fibroblast growth factor (FGF), Hedgehog (Hh), Notch and Wingless (Wnt) signaling pathways, as well as genes involved in neurogenesis, calcium and endocrine signaling, stem cell biology, and numerous homeobox (Hox) factors—in three planes using whole-mount in situ hybridization. Because of low sequence divergence across the Malawi cichlid assemblage, the probes we employ are broadly applicable in hundreds of species. We tabulate gene expression across general tissue domains, and highlight examples of unexpected expression patterns.ConclusionsOn the heels of recently published genomes, this compendium of developmental gene expression in Lake Malawi cichlids provides a valuable resource for those interested in the relationship between evolution and development.
In Lake Malawi cichlids, each tooth is replaced in one-for-one fashion every ∼20 to 50 d, and taste buds (TBs) are continuously renewed as in mammals. These structures are colocalized in the fish mouth and throat, from the point of initiation through adulthood. Here, we found that replacement teeth (RT) share a continuous band of epithelium with adjacent TBs and that both organs coexpress stem cell factors in subsets of label-retaining cells. We used RNA-seq to characterize transcriptomes of RT germs and TB-bearing oral epithelium. Analysis revealed differential usage of developmental pathways in RT compared to TB oral epithelia, as well as a repertoire of genome paralogues expressed complimentarily in each organ. Notably, BMP ligands were expressed in RT but excluded from TBs. Morphant fishes bathed in a BMP chemical antagonist exhibited RT with abrogated shh expression in the inner dental epithelium (IDE) and ectopic expression of calb2 (a TB marker) in these very cells. In the mouse, teeth are located on the jaw margin while TBs and other oral papillae are located on the tongue. Previous study reported that tongue intermolar eminence (IE) oral papillae of Follistatin (a BMP antagonist) mouse mutants exhibited dysmorphic invagination. We used these mutants to demonstrate altered transcriptomes and ectopic expression of dental markers in tongue IE. Our results suggest that vertebrate oral epithelium retains inherent plasticity to form tooth and taste-like cell types, mediated by BMP specification of progenitor cells. These findings indicate underappreciated epithelial cell populations with promising potential in bioengineering and dental therapeutics.
Our previous work shows that dioleoylphosphatidylglycerol (DOPG) accelerates corneal epithelial healing in vitro and in vivo by unknown mechanisms. Prior data demonstrate that DOPG inhibits toll-like receptor (TLR) activation and inflammation induced by microbial components (pathogen-associated molecular patterns, PAMPs) and by endogenous molecules upregulated in psoriatic skin, which act as danger-associated molecular patterns (DAMPs) to activate TLRs and promote inflammation. In the injured cornea, sterile inflammation can result from the release of the DAMP molecule, heat shock protein B4 (HSPB4), to contribute to delayed wound healing. Here, we show in vitro that DOPG inhibits TLR2 activation induced in response to HSPB4, as well as DAMPs that are elevated in diabetes, a disease that also slows corneal wound healing. Further, we show that the co-receptor, cluster of differentiation-14 (CD14), is necessary for PAMP/DAMP-induced activation of TLR2, as well as of TLR4. Finally, we simulated the high-glucose environment of diabetes to show that elevated glucose levels enhance TLR4 activation by a DAMP known to be upregulated in diabetes. Together, our results demonstrate the anti-inflammatory actions of DOPG and support further investigation into its development as a possible therapy for corneal injury, especially in diabetic patients at high risk of vision-threatening complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.