In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health
Low level laser therapy (LLLT) is frequently used in the treatment of wounds, soft tissue injury and in pain management. The exact penetration depth of LLLT in human tissue remains unspecified. Similar uncertainty regarding penetration depth arises in treating animals. This study was designed to test the hypothesis that transmission of LLLT in horses is increased by clipping the hair and/or by cleaning the area to be treated with alcohol, but is unaffected by coat colour. A LLLT probe (810 nm, 500 mW) was applied to the medial aspect of the superficial flexor tendon of seventeen equine forelimbs in vivo. A light sensor was applied to the lateral aspect, directly opposite the laser probe to measure the amount of light transmitted. Light transmission was not affected by individual horse, coat colour or leg. However, it was associated with leg condition (F = 4.42, p = 0.0032). Tendons clipped dry and clipped and cleaned with alcohol, were both associated with greater transmission of light than the unprepared state. Use of alcohol without clipping was not associated with an increase in light transmission. These results suggest that, when applying laser to a subcutaneous structure in the horse, the area should be clipped and cleaned beforehand.
The transient response of a resonant structure can be altered by the attachment of one or more substantially smaller resonators. Considered here is a coupled array of damped harmonic oscillators whose resonant frequencies are distributed across a frequency band that encompasses the natural frequency of the primary structure. Vibration energy introduced to the primary structure, which has little to no intrinsic damping, is transferred into and trapped by the attached array. It is shown that, when the properties of the array are optimized to reduce the settling time of the primary structure's transient response, the apparent damping is approximately proportional to the bandwidth of the array (the span of resonant frequencies of the attached oscillators). Numerical simulations were conducted using an unconstrained nonlinear minimization algorithm to find system parameters that result in the fastest settling time. This minimization was conducted for a range of system characteristics including the overall bandwidth of the array, the ratio of the total array mass to that of the primary structure, and the distributions of mass, stiffness, and damping among the array elements. This paper reports optimal values of these parameters and demonstrates that the resulting minimum settling time decreases with increasing bandwidth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.