Hydrogen peroxide (H2O2) imposes an oxidative stress to Escherichia coli that is manifested by oxidation of glutathione and related redox-sensitive targets. OxyR is a thiol-containing transcriptional activator whose oxidation controls the expression of genes involved in H2O2 detoxification. Here we report that certain S-nitrosothiols (RSNOs) impose what we term a "nitrosative stress" to E. coli, evidenced by lowering of intracellular thiol and the transcriptional activation of OxyR by S-nitrosylation. This cellular and genetic response determines the metabolic fate of RSNOs and thereby contributes to bacterial rescue from stasis. Our studies reveal that signaling by S-nitrosylation can extend to the level of transcription and describe a metabolic pathway that constitutes an adaptation to nitrosative stress.
Redox regulation has been perceived as a simple on-off switch in proteins (corresponding to reduced and oxidized states). Using the transcription factor OxyR as a model, we have generated, in vitro, several stable, posttranslational modifications of the single regulatory thiol (SH), including S-NO, S-OH, and S-SG, and shown that each occurs in vivo. These modified forms of OxyR are transcriptionally active but differ in structure, cooperative properties, DNA binding affinity, and promoter activities. OxyR can thus process different redox-related signals into distinct transcriptional responses. More generally, our data suggest a code for redox control through which allosteric proteins can subserve either graded (cooperative) or maximal (noncooperative) responses, and through which differential responsivity to redox-related signals can be achieved.
Chromosome I from the yeast Saccharomyces cerevisiae contains a DNA molecule of -231 kbp and is the smallest naturally occurring functional eukaryotic nuclear chromosome so far characterized. The nucleotide sequence of this chromosome has been determined as part of an international collaboration to sequence the entire yeast genome. The yeast Saccharomyces cerevisiae has been the focus of intensive study as a model eukaryote. As part of this effort, an international program is under way to determine the nucleotide sequence of the 16 chromosomes that constitute its 13.5-Mbp nuclear genome. This endeavor will provide both a complete eukaryotic gene set and a reference set of experimentally amenable genes for comparison with those of other organisms. Currently, four yeast chromosomes have been sequenced (1-4); all have a high gene density, and a majority of the genes found are newly sequenced and of unknown function. Chromosome I is the smallest S. cerevisiae chromosome. It contains a DNA molecule that is only 231 kbp, making it the smallest known fully functional nuclear chromosome. This chromosome has been studied intensively, and mutants are available for a large number of its genes (5-7). Here we report the nucleotide sequence of chromosome I and describe several unusual features of its gene organization and chromosome structure as well as many newly discovered genes.** MATERIALS AND METHODS DNA Sources. Four sources of chromosome I DNA, all from S288C-derived yeast strains, were used to generate the tem-The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.plates for DNA sequencing. These were the library of Riles et aL (8), a cosmid from the collection of Dujon (9), chromosome walking (10), and PCR amplified fragments of genomic DNA. DNA fragments, except those generated by PCR which were used directly, were subcloned into the Bluescript KS(+) plasmid from Stratagene prior to sequencing. All DNA sequencing was performed using double-stranded DNA templates.DNA Sequencing. Two methods were used for sequencing DNA templates: manual sequencing and machine-based sequencing with an Applied Biosystems sequencing machine (model 373A). Our manual sequencing used unidirectional nested deletions and was carried out as described (11, 12). For machine-based sequencing, three sets of templates were used: unidirectional nested deletions, PCR amplified chromosomal DNA, and, for the region spanning YAL062 to CDC24, cosmid DNA was shotgun cloned into Bluescript KS(+). In summary, the procedure for the Applied Biosystems machine (model 373A) used dye-labeled dideoxynucleotide terminators and a cycle sequencing kit (Prism Ready reaction dye terminator kit; Perkin-Elmer) and the protocol provided by the supplier. This method allowed us to process all four sequencing reactions in a single reaction tube. The cycle amplification reactions were performed with a Perkin-Elmer ...
HEM13 of Saccharomyces cerevisiae encodes coproporphyrinogen oxidase, an enzyme in the heme biosynthetic pathway. Expression of HEM13 is repressed by oxygen and heme. This study investigated the regulatory pathway responsible for the regulation of HEM13 expression. The transcriptional activator HAP1 is demonstrated to be required for the full-level expression ofHEM13 in the absence of heme. It is also shown that the repression ofHEM13 transcription caused by heme involves the H4P] and ROXI gene products; a mutation in either gene results in derepression of HEM13 expression. The heme-dependent expression of ROXI was found to require functional HAP1, leading one to propose that repression of HEM13 results from a pathway involving HAPI-mediated regulation of ROXI transcription in response to heme levels followed by ROX1-mediated repression of HEM13 transcription. In support of this model, expression of ROXI under control of the GAL promoter was found to result in repression of HEM13 transcription in a hap] mutant strain. The ability of ROX1 encoded by the galactose-inducible ROXI construct to function in the absence of HAP1 indicates that the only role of HAP1 in repression of HEM13 is to activate ROXI transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.