Lavender oil is one of the most valuable aromatherapy oils, its anti-bacterial and anti-fungal activities can be explained by main components such as linalool, linalyl acetate, lavandulol, geraniol, or eucalyptol. The aim of the study was to assess the anti-microbial effects of two different lavender oils on a mixed microbiota from facial skin. The commercial lavender oil and essential lavender oil from the Crimean Peninsula, whose chemical composition and activity are yet to be published, were used. Both oils were analysed by gas chromatography coupled to mass spectrometry. The composition and properties of studied oils were significantly different. The commercial ETJA lavender oil contained 10% more linalool and linalyl acetate than the Crimean lavender oil. Both oils also had different effects on the mixed facial skin microbiota. The Gram-positive bacilli were more sensitive to ETJA lavender oil, and Gram-negative bacilli were more sensitive to Crimean lavender oil. However, neither of the tested oils inhibited the growth of Gram-positive cocci. The tested lavender oils decreased the cell number of the mixed microbiota from facial skin, but ETJA oil showed higher efficiency, probably because it contains higher concentrations of monoterpenoids and monoterpenes than Crimean lavender oil does.
The ability of a wide variety of soil-borne fungal strains to degrade four structurally different compounds containing P-C bonds, namely the naturally occurring amino acid ciliatine, the popular herbicide glyphosate, phosphonoacetic acid and 2-amino-3-phosphonopropionic acid, was studied in order to show that soil fungi may play an important role in the biodegradation of organophosphonates. Most of the strains appeared to utilize ciliatine as the sole source of phosphorus for growth. Only a limited number of strains were able to grow on the other phosphonates used in this work. The strains of Trichoderma harzianum, Scopulariopsis sp. and Aspergillus niger chosen for more detailed study show the ability to degrade ciliatine, glyphosate and also amino(3-methoxyphenyl)methylphosphonic acid effectively.
Candida yeasts are saprophytes naturally present in the environment and forming colonies on human mucous membranes and skin. They are opportunistic fungi that cause severe and even fatal infections in immunocompromised individuals. Several essential oils, including eucalyptus, pine, cinnamon and lemon, have been shown to be effective against Candida strains. This study addresses the chemical composition of some commercial lemon essential oils and their antifungal potential against selected Candida yeast strains. Antifungal potential and minimum inhibitory concentrations were determined for six commercial lemon essential oils against five Candida yeast strains (Candida albicans 31, Candida tropicalis 32, Candida glabrata 33, Candida glabrata 35 and Candida glabrata 38). On the basis of the GCMS analysis, it was found that the tested lemon essential oils had different chemical compositions, but mostly, they contained almost exclusively terpenes and oxygenated terpenes. The tests show that antifungal potential of lemon essential oils against Candida yeast strains was related to the high content of monoterpenoids and the type of Candida strains. From six tested commercial oils, only four (ETJA, Vera-Nord, Avicenna-Oil and Aromatic Art) shows antifungal potential against three Candida species (C. albicans, C.tropicalis and C.glabrata). Vera-Nord and Avicenna-Oil show the best activity and effectively inhibit the growth of the C. albicans strain across the full range of the concentrations used. Our study characterises lemon essential oils, which could be used as very effective natural remedies against candidiasis caused by C. albicans.
The aim of the study was to determine the relationship between the chemical composition of eight commercial essential oils (EsO) (garlic, grapefruit, lemon grass, tea tree, thyme, verbena, cajeput, and Litsea cubeba) and their fungistatic activity in relation to four species of Fusarium: F. avenaceum, F. culmorum, F. graminearum, and F. oxysporum. The species identification of Fusarium isolates was confirmed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. The determination of qualitative and quantitative chemical composition of the EsO was carried out using the gas chromatography–mass spectrometry (GC–MS) method. The fungistatic activity of EsO was assessed by using the method of poisoned substrates. The data were compiled in the STATISTICA 13.0 program. The chemical composition of the tested oils varied; the dominant fraction, except for grapefruit and garlic oils, were monoterpenoids. The greatest similarity to the action of the synthetic pesticide Funaben T was found in four oils, i.e., thyme, lemongrass, verbena, and Litsea cubeba. The studies showed that F. oxysporum and F. avenaceum were characterized by a higher resistance to low oil concentrations, and F. culmorum and F. graminearum by sensitivity. The fungicidal activity of two EsO-dominant monoterpenoids-thymol and citral—has been confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.