Lysosomal β-galactosidase (β-Gal) deficiency causes a group of disorders that include neuronopathic GM1 gangliosidosis and non-neuronopathic Morquio B disease. We have previously proposed the use of small molecule ligands of β-Gal as pharmacological chaperones (PCs) for the treatment of GM1 gangliosidosis brain pathology. Although it is still under development, PC therapy has yielded promising preclinical results in several lysosomal diseases. In this study, we evaluated the effect of bicyclic 1-deoxygalactonojirimycin (DGJ) derivative of the sp(2)-iminosugar type, namely 5N,6S-(N'-butyliminomethylidene)-6-thio-1- deoxygalactonojirimycin (6S-NBI-DGJ), as a novel PC for human mutant β-Gal. In vitro, 6S-NBI-DGJ had the ability to inhibit the activity of human β-Gal in a competitive manner and was able to protect this enzyme from heat-induced degradation. Computational analysis supported that the rigid glycone bicyclic core of 6S-NBI-DGJ binds to the active site of the enzyme, with the aglycone N'-butyl substituent, in a precise E-orientation, located at a hydrophobic region nearby. Chaperone potential profiling indicated significant increases of enzyme activity in 24 of 88 β-Gal mutants, including four common mutations. Finally, oral administration of 6S-NBI-DGJ ameliorated the brain pathology of GM1 gangliosidosis model mice. These results suggest that 6S-NBI-DGJ is a novel PC that may be effective on a broad range of β-Gal mutants.
Biomimetic nanoparticles prepared by self-assembly of iminosugar-based glycopolypeptides evidenced remarkable multivalency properties when inhibiting α-mannosidase activity. This approach paves the way to obtain biologically active drug delivery systems having glycosidase inhibition potency.
Competitive inhibitors of either α-galactosidase (α-Gal) or β-galactosidase (β-Gal) with high affinity and selectivity have been accessed by exploiting aglycone interactions with conformationally locked sp(2)-iminosugars. Selected compounds were profiled as potent pharmacological chaperones for mutant lysosomal α- and β-Gal associated with Fabry disease and GM(1) gangliosidosis.
A general approach is reported for the design of small-molecule competitive inhibitors of lysosomal glycosidases programmed to 1) promote correct folding of mutant enzymes at the endoplasmic reticulum, 2) facilitate trafficking, and 3) undergo dissociation and self-inactivation at the lysosome. The strategy is based on the incorporation of an orthoester segment into iminosugar conjugates to switch the nature of the aglycone moiety from hydrophobic to hydrophilic in the pH 7 to pH 5 window, which has a dramatic effect on the enzyme binding affinity. As a proof of concept, new highly pH-responsive glycomimetics targeting human glucocerebrosidase or α-galactosidase with strong potential as pharmacological chaperones for Gaucher or Fabry disease, respectively, were developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.