The number of meiotic crossovers is tightly controlled and most depend on pro‐crossover ZMM proteins, such as the E3 ligase HEI10. Despite the importance of HEI10 dosage for crossover formation, how HEI10 transcription is controlled remains unexplored. In a forward genetic screen using a fluorescent crossover reporter in Arabidopsis thaliana, we identify heat shock factor binding protein (HSBP) as a repressor of HEI10 transcription and crossover numbers. Using genome‐wide crossover mapping and cytogenetics, we show that hsbp mutations or meiotic HSBP knockdowns increase ZMM‐dependent crossovers toward the telomeres, mirroring the effects of HEI10 overexpression. Through RNA sequencing, DNA methylome, and chromatin immunoprecipitation analysis, we reveal that HSBP is required to repress HEI10 transcription by binding with heat shock factors (HSFs) at the HEI10 promoter and maintaining DNA methylation over the HEI10 5′ untranslated region. Our findings provide insights into how the temperature response regulator HSBP restricts meiotic HEI10 transcription and crossover number by attenuating HSF activity.
PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) benefits crown root growth and phosphorus (P) sufficiency in rice (Oryza sativa L.). To better understand the importance of this variably present gene, we carried out a biogeographic survey of landraces and cultivars, confirming that functional OsPSTOL1 alleles prevail in low nutrient and drought-prone rainfed ecosystems, whereas loss-of-function alleles and absence haplotypes predominate in control-irrigated paddy varieties of east Asia. To address the evolutionary history of OsPSTOL1 and related genes in cereal crops, phylogenetic and transcript meta-analyses were performed. Finally, to evaluate its potential value in another Gramineae, wheat (Triticum aestivum L.) lines overexpressing OsPSTOL1 were evaluated under field and controlled low P conditions. OsPSTOL1 enhances growth, crown root number, and overall root plasticity under low P in wheat. Survey of root and shoot crown transcriptomes at two developmental stages identifies transcription factors that are differentially regulated in OsPSTOL1 wheat that are similarly controlled by the gene in rice. In wheat, OsPSTOL1 alters the timing and amplitude of regulators of root development in dry soils and hastens induction of the core P-starvation response. Based on these findings, OsPSTOL1 and related genes may aid more sustainable cultivation of cereal crops.
The common bean (Phaseolus vulgaris L.) is an important nutritional source globally but is sensitive to high temperatures and thus particularly vulnerable to climate change. Derived from a breeding program at CIAT (Colombia), a heat-tolerant breeding line, named heat-tolerant Andean-type 4 (HTA4), was developed by a series of crosses of parents with a small-bean tepary genotype (Phaseolus acutifolius L.) in their pedigree, which might be the donor of heat stress (HS) tolerance. Importantly, in HTA4, the large, commercially desirable Andean-type beans was restored. To assess underlying tolerance mechanisms, HTA4, together with a heat-sensitive Colombian variety (Calima), was exposed to HS (31 °C/24 °C HS vs. 26 °C/19 °C day/night) under controlled environment conditions. Vegetative growth and photosynthetic performance were not negatively impacted by HS in either genotype, although senescence was delayed in Calima. HS during the reproductive stage caused an increase in pod number in Calima but with few fully developed seeds and many pods aborted and/or abscised. In contrast, HTA4 maintained a similar filled pod number under HS and a higher seed weight per plant. Pollen showed high sterility in Calima, with many non-viable pollen grains (24.9% viability compared to 98.4% in control) with a thicker exine and fewer starch granules under HS. Calima pollen failed to adhere to the stigma and germinate under HS. In HTA4, pollen viability was significantly higher than in Calima (71.1% viability compared to 95.4% under control), and pollen successfully germinated and formed pollen tubes in the style under HS. It is concluded that HTA4 is heat tolerant and maintains a high level of reproductive output due to its ability to produce healthy pollen that is able to adhere to the stigma.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
To prevent yield losses caused by climate change it is important to identify naturally tolerant genotypes with traits and related pathways that can be targeted for crop improvement. Here we report on the characterization of contrasting vegetative heat tolerance in two UK bread wheat varieties. Under chronic heat stress, the heat-tolerant cultivar Cadenza produced an excessive number of tillers which translated into more spikes and higher grain yield compared to heat-sensitive Paragon. RNAseq and metabolomics analyses revealed a set of about 400 heat-responsive genes common to both genotypes. Only 71 genes showed a genotype x temperature interaction. As well as known heat-responsive genes such as HSPs, several genes that have not been previously linked to the heat response, particularly in wheat, have been identified, including several dehydrins, a number of ankyrin-repeat protein-encoding genes, and lipases. Over 5000 genotype-specific genes were identified, including photosynthesis-related genes which might explain the observed ability of Cadenza to maintain photosynthetic rate under heat stress. Contrary to primary metabolites, secondary metabolites showed a highly differentiated heat response and genotypic differences. These included e.g., benzoxazinoid (DIBOA, DIMBOA) but in particular phenylpropanoids and flavonoids with known radical scavenging capacity, which was assessed via the DPPH assay. The most highly heat-induced metabolite was (glycosylated) propanediol, which is widely used in industry as an anti-freeze. To our knowledge this is the first report on its response to stress in plants. The identified metabolites and candidate genes provide novel targets for the development of heat tolerant wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.