Importance: While congenital malformations and genetic diseases are a leading cause of early infant death, the contribution of single-gene disorders in this group is undetermined. Objective: To determine the diagnostic yield and utility of clinical exome sequencing in critically ill infants. Design, setting, participants: Clinical exome sequencing was performed on 278 unrelated infants within the first 100 days of life, admitted to Texas Children’s Hospital in Houston, over a period of five years, between December 2011 and January 2017. Exome sequencing types included proband exome, trio exome, and critical trio exome, a rapid genomic assay for seriously-ill infants. Main outcomes and measures: Indications for testing, diagnostic yield of clinical exome sequencing, turnaround time, molecular findings, patient age at diagnosis, and impact on medical management in a group of critically ill infants suspected to have genetic disorders. Results: Clinical indications for exome sequencing included a wide range of medical concerns. Overall, molecular diagnosis was achieved in 102/278 infants by clinical exome sequencing with a diagnostic yield of 36.7%. The diagnosis affected medical management in 53/102 (52.0%) of infants, with substantial impact on informed redirection of care, initiation of new subspecialist care, medication/dietary modifications, and furthering life-saving procedures in select patients. Critical trio exome revealed a molecular diagnosis in 32/63 infants (50.8%) at 33.1±5.6 days of life with turnaround time (TAT) of 13.0 ± 0.4 days. Clinical care was altered by the diagnosis in 23/32 (71.9%) patients. The diagnostic yield, patient age at diagnosis, and medical impact in the group that underwent critical trio exome is significantly different comparing to regular exome testing. For deceased infants (n=81), genetic disorders were molecular diagnosed in 39 (48.1%) by exome sequencing with implications for recurrence risk counseling. Conclusions and relevance: Exome sequencing is a powerful tool for the diagnostic evaluation of critically ill infants with suspected monogenic disorders in the neonatal and pediatric ICUs, leading to notable impact on clinical decision-making.
AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca 2+ -impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.
Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease.
CES effectively identified disease-causing alleles at the mild end of the cohensinopathy spectrum and enabled characterization of candidate disease genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.