KEY WORDS ExopolysaccharideLipopolysaccharide Neutral sugars Nodulation Plasmid Rhizobium tr!folii
SUMMARYThe nodulating Rhizobium trifolii strain 24 and its non-nodulating mutant 24 nod-3 have been examined. The exopolysaccharides of both cultures studied contained mannose, galactose and glucose at similar molar ratios. On the other hand some quantitative differences have been found between the lipopolysaccharides in respect of the composition of neutral sugars. Glucose and rhamnose were the main constituents of the nodulating strain 24, whereas rhamnose and galactose in non-nodulating mutant 24 nod-3 deprived of the plasmid pWZ2.
Lipopolysaccharides (LPS) of Rhizobium galegae, a symbiotically nitrogen-fixing species of root-nodule bacteria, were isolated by the phenol-water method from strain HAMBI 1461, the LPS of which resembled enterobacterial smooth type LPS, and from strains HAMBI 1174 and HAMBI 1208, the LPSs of which resembled rough type LPS. The results of PAGE analysis of LPSs, Bio-Gel P2 gel filtration of polysaccharide fractions and the presence of deoxysugars and 4-O-methyl-deoxysugar both in the rough and smooth LPSs suggested that rough LPS contained a short O-antigenic polysaccharide for which we propose the name short O-chain LPS. Accordingly, the smooth LPS is called long O-chain LPS. Despite of the differences in the structure of LPS of R. galegae, all strains were equally effective in nodulating their hosts. The short O-chain LPS of R. galegae showed many features similar to those of phylogenetically related agrobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.