According to the assumptions of Organisation for Economic Co-operation and Development OECD, the share of biofuels in the global transport sector is estimated to reach 15%–23% by 2050. The triticale can be used to produce bioethanol. The appropriate production process should generate as much renewable energy as possible per production unit. Plant production can be carried out in various tillage systems and using appropriate doses of nitrogen fertilization. The objective of this study is to compare the effect of traditional tillage system (TRD) and reduced (RED) tillage technology and nitrogen fertilizer (0, 40, 80, 120 kg N ha−1) on grain and bioethanol yield of spring triticale. The field experiment was performed in the south east of Poland (50°42′ N, 23°15′ E) on medium dystrophic typical brown soil. Based on research and calculations, the TRD system and between 40 and 80 kg ha−1 of N fertilizer are recommended for use in the cultivation of triticale for bioethanol production purposes. Such a variant will ensure a sufficient yield of grain (5.190 and 5.803 t ha−1), starch (3.462 and 3.871 t ha−1) and bioethanol (2487.3 and 2780.7 L ha−1) and good agronomic efficiency of N fertilizer (16.96 and 12.15 L of bioethanol per 1 kg of nitrogen (N) applied). The best ratio of energy efficiency of bioethanol production (EROI — Energy Return on (Energy) Investment or “net energy”) was recorded for the TRD system (1.138:1) and for the N fertilizer at 40 kg N ha−1 (1.144:1).
It was assumed in the study that heavy metals occurring in soils and the air accumulate in grasses constituting the main species used in the turfing of soil in road verges and embankments along traffic routes and in other parts of urbanized areas. The aim of the present study was to assess the bioaccumulation of Cu, Pb, and Zn in three selected lawn cultivars of five grass species and in the soil of the roadside green belt in terms of soil properties and heavy metal uptake by plants in the aspect of determining their usefulness in protecting the soils from contamination caused by motor vehicle traffic. Samples of the plant material and soil were collected for chemical analysis in the autumn of 2018 (October) on the embankment along National Road No. 17 between Piaski and Łopiennik (Poland), where 15 lawn cultivars of five grass species had been sown 2 years earlier. During the study, Cu, Pb, and Zn levels were determined in the aboveground biomass of the grasses under study and in the soil beneath these grasses (the 0–20 cm layer). All the grass species under study can thus be regarded as accumulators of Cu and Zn because the levels of these elements in the aboveground biomass of the grasses were higher than in the soil beneath these grasses. The present study demonstrates that the grasses can accumulate a large amount of Cu and Zn from soils and transfer it to the aboveground biomass. Tested species of grasses are not a higher bioaccumulators for Pb. The best grass species for the sowing of roadsides embankment, with the highest BCF values for the studied metals, is Lolium perenne (Taya variety).
A floristic inventory of segetal flora was carried out in abandoned fields and adjacent crop fields on rendzina soils in the Zamość region in the year 2010. This study found a total of 130 weed species belonging to 30 botanical families. The following families were represented most frequently: Asteraceae, Fabaceae, Poaceae, Lamiaceae, Scrophulariaceae, and Brassicaceae. In the segetal flora, apophytes are dominant (55% of the total flora), with the highest number of meadow and xerothermic grassland species among them. Archeophytes (38%) predominate in the group of anthropophytes. The species characterized by the highest constancy classes and reaching the highest cover indices posed the greatest threat to crops in the study area. The following weeds are most frequently found in fallow fields: <em>Consolida regalis</em>, <em>Cichorium intybus</em>, and <em>Sinapis arvensis</em>, while <em>Papaver rhoeas</em> is the greatest threat to cereal crops grown on rendzina soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.