Poultry contaminated with Salmonella enterica subsp. enterica are a major cause of zoonotic foodborne gastroenteritis. Salmonella Heidelberg is a common serotype of Salmonella that has been implicated as a foodborne pathogen associated with the consumption of improperly prepared chicken. To better understand the effectiveness of common antimicrobial disinfectants (i.e., peroxyacetic acid [PAA], acidified hypochlorite [aCH], and cetylpyridinium chloride [CPC]), environmental isolates of nontyphoidal Salmonella were exposed to these agents under temperature, concentration, and contact time conditions consistent with poultry processing. Under simulated processing conditions (i.e., chiller tank and dipping stations), the bacteriostatic and bactericidal effects of each disinfectant were assessed against biofilm and planktonic cultures of each organism in a disinfectant challenge. Log reductions, planktonic MICs, and mean biofilm eradication concentrations were computed. The biofilms of each Salmonella isolate were more resistant to the disinfectants than were their planktonic counterparts. Although PAA was bacteriostatic and bactericidal against the biofilm and planktonic Salmonella isolates tested at concentrations up to 64 times the concentrations commonly used in a chiller tank during poultry processing, aCH was ineffective against the same isolates under identical conditions. At the simulated 8-s dipping station, CPC was bacteriostatic against all seven and bactericidal against six of the seven Salmonella isolates in their biofilm forms at concentrations within the regulatory range. These results indicate that at the current contact times and concentrations, aCH and PAA are not effective against these Salmonella isolates in their biofilm state. The use of CPC should be considered as a tool for controlling Salmonella biofilms in poultry processing environments.
The application of RNA sequencing in commercial poultry could facilitate a novel approach toward food safety with respect to identifying conditions in food production that mitigate transcription of genes associated with virulence and survivability. In this study, we evaluated the effects of disinfectant exposure on the transcriptomes of two field isolates of Salmonella Heidelberg (SH) isolated from a commercial broiler processing plant in 1992 and 2014. The isolates were each exposed separately to the following disinfectants commonly used in poultry processing: cetylpyridinium chloride (CPC), acidified calcium hypochlorite (aCH), and peroxyacetic acid (PAA). Exposure times were 8 s with CPC to simulate a poultry processing dipping station or 90 min with aCH and PAA to simulate the chiller tank in a poultry processing plant at 4°C. Based on comparison with a publicly available annotated SH reference genome with 5,088 genes, 90 genes were identified as associated with virulence, pathogenicity, and resistance (VPR). Of these 90 VPR genes, 9 (10.0%), 28 (31.1%), and 1 (1.1%) gene were upregulated in SH 2014 and 21 (23.3%), 26 (28.9%), and 2 (2.2%) genes were upregulated in SH 2014 challenged with CPC, aCH, and PAA, respectively. This information and previously reported MICs for the three disinfectants with both SH isolates allow researchers to make more accurate recommendations regarding control methods of SH and public health considerations related to SH in food production facilities where SH has been isolated. For example, the MICs revealed that aCH is ineffective for SH inhibition at regulatory levels allowed for poultry processing and that aCH was ineffective for inhibiting SH growth and caused an upregulation of VPR genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.