Colicin production in Escherichia coli ( E . coli ) strains represents an important trait with regard to microbial survival and competition in the complex intestinal environment. A novel colicin type, colicin Z (26.3 kDa), was described as a product of an original producer, extraintestinal E . coli B1356 strain, isolated from the anorectal abscess of a 17 years-old man. The 4,007 bp plasmid (pColZ) was completely sequenced and colicin Z activity ( cza ) and colicin Z immunity ( czi ) genes were identified. The cza and czi genes are transcribed in opposite directions and encode for 237 and 151 amino acid-long proteins, respectively. Colicin Z shows a narrow inhibitory spectrum, being active only against enteroinvasive E . coli (EIEC) and Shigella strains via CjrC receptor recognition and CjrB- and ExbB-, ExbD-mediated colicin translocation. All tested EIEC and Shigella strains isolated between the years 1958–2010 were sensitive to colicin Z. The lethal effect of colicin Z was found to be directed against cell wall peptidoglycan (PG) resulting in PG degradation, as revealed by experiments with Remazol Brilliant Blue-stained purified peptidoglycans and with MALDI-TOF MS analyses of treated PG. Colicin Z represents a new class of colicins that is structurally and functionally distinct from previously studied colicin types.
We introduce and study a multicomponent lipid film mimicking lipid composition of the human lung surfactant. It consists of phospholipids with various lipid headgroups and tail saturation. Furthermore, it includes cholesterol and oxidized lipids. Langmuir trough and fluorescence microscopy experiments are combined with fully atomistic molecular dynamics simulations. The considered lipid mixtures form complex interfacial films with properties modulated by lateral compression. Cholesterol laterally condenses, and oxidized lipids laterally expand the films; both types of molecules increase film miscibility. Oxidized lipids also alter the lipid−water interface enhancing film hydration; this effect can be partially reversed by cholesterol. Regarding presentation of different chemical moieties toward the aqueous subphase, the zwitterionic phosphatidylcholine groups dominate at the lipid−water interface, while both the negatively charged phosphatidylglycerol and hydroxyl group of cholesterol are less exposed. The investigated synthetic lipid-only mimic of the lung surfactant may serve as a basis for further studies involving nonlipid pulmonary surfactant components.
Colicin U is a protein produced by the bacterium Shigella boydii (serovars 1 and 8). It exerts antibacterial activity against strains of the enterobacterial genera Shigella and Escherichia. Here, we report that colicin U forms voltage-dependent pores in planar lipid membranes; its single-pore conductance was found to be about 22 pS in 1 M KCl at pH 6 under 80 mV in asolectin bilayers. In agreement with the high degree of homology between their C-terminal domains, colicin U shares some pore characteristics with the related colicins A and B. Colicin U pores are strongly pH dependent, and as we deduced from the activity of colicin U in planar membranes at different protein concentrations, they have a monomeric pore structure. However, in contrast to related colicins, we observed a very low cationic selectivity of colicin U pores (1.5/1 of K+/Cl− at pH 6) along with their atypical voltage gating. Finally, using nonelectrolytes, we determined the inner diameter of the pores to be in the range of 0.7 to 1 nm, which is similar to colicin Ia, but with a considerably different inner profile. IMPORTANCE Currently, a dramatic increase in antibiotic resistance is driving researchers to find new antimicrobial agents. The large group of toxins called bacteriocins appears to be very promising from this point of view, especially because their narrow killing spectrum allows specific targeting against selected bacterial strains. Colicins are a subgroup of bacteriocins that act on Gram-negative bacteria. To date, some colicins are commercially used for the treatment of animals (1) and tested as a component of engineered species-specific antimicrobial peptides, which are studied for the potential treatment of humans (2). Here, we present a thorough single-molecule study of colicin U which leads to a better understanding of its mode of action. It extends the range of characterized colicins available for possible future medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.