For thousands of years science philosophers have been impressed by how effectively the senses work together to enhance the salience of biologically meaningful events. However, they really had no idea how this was accomplished. Recent insights into the underlying physiological mechanisms reveal that, in at least one circuit, this ability depends on an intimate dialogue among neurons at multiple levels of the neuraxis; this dialogue cannot take place until long after birth and might require a specific kind of experience. Understanding the acquisition and usage of multisensory integration in the midbrain and cerebral cortex of mammals has been aided by a multiplicity of approaches. Here we examine some of the fundamental advances that have been made and some of the challenging questions that remain.
In perceptual discrimination tasks, a subject’s response time is determined both by sensory and motor processes. Measuring the time consumed by the perceptual evaluation step alone is thus complicated by factors such as motor preparation, task difficulty and speed-accuracy tradeoffs. Here we present a task design that minimizes these confounds and allows us to track a subject’s perceptual performance with unprecedented temporal resolution. We find that monkeys can make accurate color discriminations in less than 30 ms. Furthermore, our simple task design provides a novel tool for elucidating how neuronal activity relates to sensory versus motor processing, as demonstrated with neural data from cortical oculomotor neurons. In these cells, perceptual information acts by accelerating and decelerating the ongoing motor plans associated with correct and incorrect choices, as predicted by a race-to-threshold model, and the time course of these neural events parallels the time course of the subject's choice accuracy.
It is well established that superior colliculus (SC) multisensory neurons integrate cues from different senses; however, the mechanisms responsible for producing multisensory responses are poorly understood. Previous studies have shown that spatially congruent cues from different modalities (e.g., auditory and visual) yield enhanced responses and that the greatest relative enhancements occur for combinations of the least effective modality-specific stimuli. Although these phenomena are well documented, little is known about the mechanisms that underlie them, because no study has systematically examined the operation that multisensory neurons perform on their modality-specific inputs. The goal of this study was to evaluate the computations that multisensory neurons perform in combining the influences of stimuli from two modalities. The extracellular activities of single neurons in the SC of the cat were recorded in response to visual, auditory, and bimodal visual-auditory stimulation. Each neuron was tested across a range of stimulus intensities and multisensory responses evaluated against the null hypothesis of simple summation of unisensory influences. We found that the multisensory response could be superadditive, additive, or subadditive but that the computation was strongly dictated by the efficacies of the modalityspecific stimulus components. Superadditivity was most common within a restricted range of near-threshold stimulus efficacies, whereas for the majority of stimuli, response magnitudes were consistent with the linear summation of modality-specific influences. In addition to providing a constraint for developing models of multisensory integration, the relationship between response mode and stimulus efficacy emphasizes the importance of considering stimulus parameters when inducing or interpreting multisensory phenomena.
The ability to use cues from multiple senses in concert is a fundamental aspect of brain function. It maximizes the brain’s use of the information available to it at any given moment and enhances the physiological salience of external events. Because each sense conveys a unique perspective of the external world, synthesizing information across senses affords computational benefits that cannot otherwise be achieved. Multisensory integration not only has substantial survival value but can also create unique experiences that emerge when signals from different sensory channels are bound together. However, neurons in a newborn’s brain are not capable of multisensory integration, and studies in the midbrain have shown that the development of this process is not predetermined. Rather, its emergence and maturation critically depend on cross-modal experiences that alter the underlying neural circuit in such a way that optimizes multisensory integrative capabilities for the environment in which the animal will function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.